76 resultados para Cyclin B1
Resumo:
Cyclin-dependent protein kinases (CDKs) play key roles in regulating the eukaryotic cell cycle. We have analyzed the expression of four rice (Oryza sativa) CDK genes, cdc2Os1, cdc2Os2, cdc2Os3, and R2, by in situ hybridization of sections of root apices. Transcripts of cdc2Os1, cdc2Os2, and R2 were detected uniformly in the dividing region of the root apex. cdc2Os1 and cdc2Os2 were also expressed in differentiated cells such as those in the sclerenchyma, pericycle, and parenchyma of the central cylinder. By contrast, signals corresponding to transcripts of cdc2Os3 were distributed only in patches in the dividing region. Counterstaining of sections with 4′,6-diamidino-2-phenylindole and double-target in situ hybridization with a probe for histone H4 transcripts revealed that cdc2Os3 transcripts were abundant from the G2 to the M phase, but were less abundant or absent during the S phase. The levels of the Cdc2Os3 protein and its associated histone H1-kinase activity were reduced by treatment of cultured cells with hydroxyurea, which blocks cycling cells at the onset of the S phase. Our results suggest that domains other than the conserved amino acid sequence (the PSTAIRE motif) have important roles in the function of non-PSTAIRE CDKs in distinct cell-cycle phases.
Resumo:
The commitment of eukaryotic cells to division normally occurs during the G1 phase of the cell cycle. In mammals D-type cyclins regulate the progression of cells through G1 and therefore are important for both proliferative and developmental controls. Plant CycDs (D-type cyclin homologs) have been identified, but their precise function during the plant cell cycle is unknown. We have isolated three tobacco (Nicotiana tabacum) CycD cyclin cDNAs: two belong to the CycD3 class (Nicta;CycD3;1 and Nicta;CycD3;2) and the third to the CycD2 class (Nicta;CycD2;1). To uncouple their cell-cycle regulation from developmental control, we have used the highly synchronizable tobacco cultivar Bright Yellow-2 in a cell-suspension culture to characterize changes in CycD transcript levels during the cell cycle. In cells re-entering the cell cycle from stationary phase, CycD3;2 was induced in G1 but subsequently remained at a constant level in synchronous cells. This expression pattern is consistent with a role for CycD3;2, similar to mammalian D-type cyclins. In contrast, CycD2;1 and CycD3;1 transcripts accumulated during mitosis in synchronous cells, a pattern of expression not normally associated with D-type cyclins. This could suggest a novel role for plant D-type cyclins during mitosis.
Resumo:
A mammalian A-type cyclin, cyclin A1, is highly expressed in testes of both human and mouse and targeted mutagenesis in the mouse has revealed the unique requirement for cyclin A1 in the progression of male germ cells through the meiotic cell cycle. While very low levels of cyclin A1 have been reported in the human hematopoietic system and brain, the sites of elevated levels of expression of human cyclin A1 were several leukemia cell lines and blood samples from patients with hematopoietic malignances, notably acute myeloid leukemia. To evaluate whether cyclin A1 is directly involved with the development of myeloid leukemia, mouse cyclin A1 protein was overexpressed in the myeloid lineage of transgenic mice under the direction of the human cathepsin G (hCG) promoter. The resulting transgenic mice exhibited an increased proportion of immature myeloid cells in the peripheral blood, bone marrow, and spleen. The abnormal myelopoiesis developed within the first few months after birth and progressed to overt acute myeloid leukemia at a low frequency (≈15%) over the course of 7–14 months. Both the abnormalities in myelopoiesis and the leukemic state could be transplanted to irradiated SCID (severe combined immunodeficient) mice. The observations suggest that cyclin A1 overexpression results in abnormal myelopoiesis and is necessary, but not sufficient in the cooperative events inducing the transformed phenotype. The data further support an important role of cyclin A1 in hematopoiesis and the etiology of myeloid leukemia.
Resumo:
The cysteine endoproteases (EP)-A and EP-B were purified from green barley (Hordeum vulgare L.) malt, and their identity was confirmed by N-terminal amino acid sequencing. EP-B cleavage sites in recombinant type-C hordein were determined by N-terminal amino acid sequencing of the cleavage products, and were used to design internally quenched, fluorogenic peptide substrates. Tetrapeptide substrates of the general formula 2-aminobenzoyl-P2-P1-P1′-P2′-tyrosine(NO2)-aspartic acid, in which cleavage occurs between P1 and P1′, showed that the cysteine EPs preferred phenylalanine, leucine, or valine at P2. Arginine was preferred to glutamine at P1, whereas proline at P2, P1, or P1′ greatly reduced substrate kinetic specificity. Enzyme cleavage of C hordein was mainly determined by the primary sequence at the cleavage site, because elongation of substrates, based on the C hordein sequence, did not make them more suitable substrates. Site-directed mutagenesis of C hordein, in which serine or proline replaced leucine, destroyed primary cleavage sites. EP-A and EP-B were both more active than papain, mostly because of their much lower Km values.
Resumo:
In the Xenopus oocyte system mitogen treatment triggers the G2/M transition by transiently inhibiting the cAMP-dependent protein kinase (PKA); subsequently, other signal transduction pathways are activated, including the mitogen-activated protein kinase (MAPK) and polo-like kinase pathways. To study the interactions between these pathways, we have utilized a cell-free oocyte extract that carries out the signaling events of oocyte maturation after addition of the heat-stable inhibitor of PKA, PKI. PKI stimulated the synthesis of Mos and activation of both the MAPK pathway and the Plx1/Cdc25C/cyclin B-Cdc2 pathway. Activation of the MAPK pathway alone by glutathione S-transferase (GST)-Mos did not lead to activation of Plx1 or cyclin B-Cdc2. Inhibition of the MAPK pathway in the extract by the MEK1 inhibitor U0126 delayed, but did not prevent, activation of the Plx1 pathway, and inhibition of Mos synthesis by cycloheximide had a similar effect, suggesting that MAPK activation is the only relevant function of Mos. Immunodepletion of Plx1 completely inhibited activation of Cdc25C and cyclin B-Cdc2 by PKI, indicating that Plx1 is necessary for Cdc25C activation. In extracts containing fully activated Plx1 and Cdc25C, inhibition of cyclin B-Cdc2 by p21Cip1 had no significant effect on either the phosphorylation of Cdc25C or the activity of Plx1. These results demonstrate that maintenance of Plx1 and Cdc25C activity during mitosis does not require cyclin B-Cdc2 activity.
Resumo:
Although cyclin-dependent kinase 5 (Cdk5) is closely related to other cyclin-dependent kinases, its kinase activity is detected only in the postmitotic neurons. Cdk5 expression and kinase activity are correlated with the extent of differentiation of neuronal cells in developing brain. Cdk5 purified from nervous tissue phosphorylates neuronal cytoskeletal proteins including neurofilament proteins and microtubule-associated protein tau in vitro. These findings indicate that Cdk5 may have unique functions in neuronal cells, especially in the regulation of phosphorylation of cytoskeletal molecules. We report here generation of Cdk5(-/-) mice through gene targeting and their phenotypic analysis. Cdk5(-/-) mice exhibit unique lesions in the central nervous system associated with perinatal mortality. The brains of Cdk5(-/-) mice lack cortical laminar structure and cerebellar foliation. In addition, the large neurons in the brain stem and in the spinal cord show chromatolytic changes with accumulation of neurofilament immunoreactivity. These findings indicate that Cdk5 is an important molecule for brain development and neuronal differentiation and also suggest that Cdk5 may play critical roles in neuronal cytoskeleton structure and organization.
Resumo:
To study the involvement of cyclin D1 in epithelial growth and differentiation and its putative role as an oncogene in skin, transgenic mice were developed carrying the human cyclin D1 gene driven by a bovine keratin 5 promoter. As expected, all squamous epithelia including skin, oral mucosa, trachea, vaginal epithelium, and the epithelial compartment of the thymus expressed aberrant levels of cyclin D1. The rate of epidermal proliferation increased dramatically in transgenic mice, which also showed basal cell hyperplasia. However, epidermal differentiation was unaffected, as shown by normal growth arrest of newborn primary keratinocytes in response to high extracellular calcium. Moreover, an unexpected phenotype was observed in the thymus. Transgenic mice developed a severe thymic hyperplasia that caused premature death due to cardio-respiratory failure within 4 months of age. By 14 weeks, the thymi of transgenic mice increased in weight up to 40-fold, representing 10% of total body weight. The hyperplastic thymi had normal histology revealing a well-differentiated cortex and medulla, which supported an apparently normal T-cell developmental program based on the distribution of thymocyte subsets. These results suggest that proliferation and differentiation of epithelial cells are under independent genetic controls in these organs and that cyclin D1 can modulate epithelial proliferation without altering the initiation of differentiation programs. No spontaneous development of epithelial tumors or thymic lymphomas was perceived in transgenic mice during their first 8 months of life, although they continue under observation. This model provides in vivo evidence of the action of cyclin D1 as a pure mediator of proliferation in epithelial cells.
Resumo:
In yeast, commitment to cell division (Start) is catalyzed by activation of the Cdc28 protein kinase in late G1 phase by the Cln1, Cln2, and Cln3 G1 cyclins. The Clns are essential, rate-limiting activators of Start because cells lacking Cln function (referred to as cln-) arrest at Start and because CLN dosage modulates the timing of Start. At or shortly after Start, the development of B-type cyclin Clb-Cdc28 kinase activity and initiation of DNA replication requires the destruction of p40SIC1, a specific inhibitor of the Clb-Cdc28 kinases. I report here that cln cells are rendered viable by deletion of SIC1. Conversely, in cln1 cln2 cells, which have low CLN activity, modest increases in SIC1 gene dosage cause inviability. Deletion of SIC1 does not cause a general bypass of Start since (cln-)sic1 cells remain sensitive to mating pheromone-induced arrest. Far1, a pheromone-activated inhibitor of Cln-Cdc28 kinases, is dispensable for arrest of (cln-)sic1 cells by pheromone, implying the existence of an alternate Far1-independent arrest pathway. These observations define a pheromone-sensitive activity able to catalyze Start only in the absence of p40SIC1. The existence of this activity means that the B-type cyclin inhibitor p40SIC1 imposes the requirement for Cln function at Start.
Resumo:
Arterial injury induces a series of proliferative, vasoactive, and inflammatory responses that lead to vascular proliferative diseases, including atherosclerosis and restenosis. Although several factors have been defined which stimulate this process in vivo, the role of specific cellular gene products in limiting this response is not well understood. The p21 cyclin-dependent kinase inhibitor affects cell cycle progression, senescence, and differentiation in transformed cells, but its expression in injured blood vessels has not been investigated. In this study, we report that p21 protein is induced in porcine arteries following balloon catheter injury and suggest that p21 is likely to play a role in limiting arterial cell proliferation in vivo. Vascular endothelial and smooth muscle cell growth was arrested through the ability of p21 to inhibit progression through the G1 phase of the cell cycle. Following injury to porcine arteries, p21 gene product was detected in the neointima and correlated inversely with the location and kinetics of intimal cell proliferation. Direct gene transfer of p21 using an adenoviral vector into balloon injured porcine arteries inhibited the development of intimal hyperplasia. Taken together, these findings suggest that p21, and possibly related cyclin-dependent kinase inhibitors, may normally regulate cellular proliferation following arterial injury, and strategies to increase its expression may prove therapeutically beneficial in vascular diseases.
Resumo:
Transcription factor IIH (TFIIH) is a multisubunit complex required for transcription and for DNA nucleotide excision repair. TFIIH possesses three enzymatic activities: (i) an ATP-dependent DNA helicase, (ii) a DNA-dependent ATPase, and (iii) a kinase with specificity for the carboxyl-terminal domain of RNA polymerase II. The kinase activity was recently identified as the cdk (cyclin-dependent kinase) activating kinase, CAK, composed of cdk7, cyclin H, and MAT-1. Here we report the isolation and characterization of three distinct CAK-containing complexes from HeLa nuclear extracts: CAK, a novel CAK-ERCC2 complex, and TFIIH. CAK-ERCC2 can efficiently associate with core-TFIIH to reconstitute holo-TFIIH transcription activity. We present evidence proposing a critical role for ERCC2 in mediating the association of CAK with core TFIIH subunits.
Resumo:
The protein kinase inhibitor staurosporine has been shown to induce G1 phase arrest in normal cells but not in most transformed cells. Staurosporine did not induce G1 phase arrest in the bladder carcinoma cell line 5637 that lacks a functional retinoblastoma protein (pRB-). However, when infected with a pRB-expressing retrovirus [Goodrich, D. W., Chen, Y., Scully, P. & Lee, W.-H. (1992) Cancer Res. 52, 1968-1973], these cells, now pRB+, were arrested by staurosporine in G1 phase. This arrest was accompanied by the accumulation of hypophosphorylated pRB. In both the pRB+ and pRB- cells, cyclin D1-associated kinase activities were reduced on staurosporine treatment. In contrast, cyclin-dependent kinase (CDK) 2 and cyclin E/CDK2 activities were inhibited only in pRB+ cells. Staurosporine treatment did not cause reductions in the protein levels of CDK4, cyclin D1, CDK2, or cyclin E. The CDK inhibitor proteins p21(Waf1/Cip1) and p27 (Kip1) levels increased in staurosporine-treated cells. Immunoprecipitation of CDK2, cyclin E, and p2l from staurosporine-treated pRB+ cells revealed a 2.5- to 3-fold higher ratio of p2l bound to CDK2 compared with staurosporine-treated pRB- cells. In pRB+ cells, p2l was preferentially associated with Thrl6O phosphorylated active CDK2. In pRB- cells, however, p2l was bound preferentially to the unphosphorylated, inactive form of CDK2 even though the phosphorylated form was abundant. This is the first evidence suggesting that G1 arrest by 4 nM staurosporine is dependent on a functional pRB protein. Cell cycle arrest at the pRB- dependent checkpoint may prevent activation of cyclin E/CDK2 by stabilizing its interaction with inhibitor proteins p2l and p27.
Resumo:
p107 is a retinoblastoma protein-related phosphoprotein that, when overproduced, displays a growth inhibitory function. It interacts with and modulates the activity of the transcription factor, E2F-4. In addition, p107 physically associates with cyclin E-CDK2 and cyclin A-CDK2 complexes in late G1 and at G1/S, respectively, an indication that cyclin-dependent kinase complexes may regulate, contribute to, and/or benefit from p107 function during the cell cycle. Our results show that p107 phosphorylation begins in mid G1 and proceeds through late G1 and S and that cyclin D-associated kinase(s) contributes to this process. In addition, E2F-4 binds selectively to hypophosphorylated p107, and G1 cyclin-dependent p107 phosphorylation leads to the dissociation of p107-E2F-4 complexes as well as inactivation of p107 G1 blocking function.
Resumo:
Cyclins are cell cycle regulators whose proteins oscillate dramatically during the cell cycle. Cyclin steady-state mRNA levels also fluctuate, and there are indications that both their rate of transcription and mRNA stability are under cell cycle control. Here, we demonstrate the transcriptional regulation of higher eukaryote cyclins throughout the whole cell cycle with a high temporal resolution. The promoters of two Arabidopsis cyclins, cyc3aAt and cyc1At, mediated transcriptional oscillation of the beta-glucuronidase (gus) reporter gene in stably transformed tobacco BY-2 cell lines. The rate of transcription driven by the cyc3aAt promoter was very low during G1, slowly increased during the S phase, peaked at the G2 phase and G2-to-M transition, and was down-regulated before early metaphase. In contrast, the rate of the cyc1At-related transcription increased upon exit of the S phase, peaked at the G2-to-M transition and during mitosis, and decreased upon exit from the M phase. This study indicates that transcription mechanisms that seem to be conserved among species play a significant role in regulating the mRNA abundance of the plant cyclins. Furthermore, the transcription patterns of cyc3aAt and cyc1At were coherent with their slightly higher sequence similarity to the A and B groups of animal cyclins, respectively, suggesting that they may fulfill comparable roles during the cell cycle.
Resumo:
Ubiquitin-dependent proteolysis of the mitotic cyclins A and B is required for the completion of mitosis and entry into the next cell cycle. This process is catalyzed by the cyclosome, an approximately 22S particle that contains a cyclin-selective ubiquitin ligase activity, E3-C, that requires a cyclin-selective ubiquitin carrier protein (UBC) E2-C. Here we report the purification and cloning of E2-C from clam oocytes. The deduced amino acid sequence of E2-C indicates that it is a new UBC family member. Bacterially expressed recombinant E2-C is active in in vitro cyclin ubiquitination assays, where it exhibits the same substrate specificities seen with native E2-C. These results demonstrate that E2-C is not a homolog of UBC4 or UBC9, proteins previously suggested to be involved in cyclin ubiquitination, but is a new UBC family member with unique properties.
Resumo:
Alterations of various components of the cell cycle regulatory machinery that controls the progression of cells from a quiescent to a growing state contribute to the development of many human cancers. Such alterations include the deregulated expression of G1 cyclins, the loss of function of activities such as those of protein p16INK4a that control G1 cyclin-dependent kinase activity, and the loss of function of the retinoblastoma protein (RB), which is normally regulated by the G1 cyclin-dependent kinases. Various studies have revealed an inverse relationship in the expression of p16INK4a protein and the presence of functional RB in many cell lines. In this study we show that p16INK4a is expressed in cervical cancer cell lines in which the RB gene, Rb, is not functional, either as a consequence of Rb mutation or expression of the human papillomavirus E7 protein. We also demonstrate that p16INK4a levels are increased in primary cells in which RB has been inactivated by DNA tumor virus proteins. Given the role of RB in controlling E2F transcription factor activity, we investigated the role of E2F in controlling p16INK4a expression. We found that E2F1 overexpression leads to an inhibition of cyclin D1-dependent kinase activity and induces the expression of a p16-related transcript. We conclude that the accumulation of G1 cyclin-dependent kinase activity during normal G1 progression leads to E2F accumulation through the inactivation of RB, and that this then leads to the induction of cyclin kinase inhibitor activity and a shutdown of G1 kinase activity.