51 resultados para Cochlear Nucleus
Resumo:
Rna1p is the GTPase activating enzyme for Ran/TC4, a Ras-like GTPase necessary for nuclear/cytosolic exchange. Although most wild-type Rna1p is located in the cytosol, we found that the vast majority of the mutant Rna1-1p and, under appropriate physiological conditions, a small portion of the wild-type Rna1p cofractionate with yeast nuclei. Subnuclear fractionation studies show that most of the Rna1p is tightly associated with nuclear components, and that a portion of the active protein can be solubilized by treatments that fail to solubilize inactive Rna1-1p. To learn the precise nuclear locations of the Rna1 proteins, we studied their subcellular distributions in HeLa cells. By indirect immuno-fluorescence we show that wild-type Rna1p has three subcellular locations. The majority of the protein is distributed throughout the cytosol, but a portion of the protein is nucleus-associated, located at both the cytosolic surface and within the nucleoplasm. Mutant Rna1-1p is found at the outer nuclear surface and in the cytosol. We propose that a small pool of the wild-type Rna1p is located in the nuclear interior, supporting the model that the same components of the Ran/TC4 GTPase cycle exist on both sides of the nuclear membrane.
Resumo:
Multiscale asymptotic methods developed previously to study macromechanical wave propagation in cochlear models are generalized here to include active control of a cochlear partition having three subpartitions, the basilar membrane, the reticular lamina, and the tectorial membrane. Activation of outer hair cells by stereocilia displacement and/or by lateral wall stretching result in a frequency-dependent force acting between the reticular lamina and basilar membrane. Wavelength-dependent fluid loads are estimated by using the unsteady Stokes' equations, except in the narrow gap between the tectorial membrane and reticular lamina, where lubrication theory is appropriate. The local wavenumber and subpartition amplitude ratios are determined from the zeroth order equations of motion. A solvability relation for the first order equations of motion determines the subpartition amplitudes. The main findings are as follows: The reticular lamina and tectorial membrane move in unison with essentially no squeezing of the gap; an active force level consistent with measurements on isolated outer hair cells can provide a 35-dB amplification and sharpening of subpartition waveforms by delaying dissipation and allowing a greater structural resonance to occur before the wave is cut off; however, previously postulated activity mechanisms for single partition models cannot achieve sharp enough tuning in subpartitioned models.
Resumo:
The nucleus accumbens is considered a critical target of the action of drugs of abuse. In this nucleus a "shell" and a "core" have been distinguished on the basis of anatomical and histochemical criteria. The present study investigated the effect in freely moving rats of intravenous cocaine, amphetamine, and morphine on extracellular dopamine concentrations in the nucleus accumbens shell and core by means of microdialysis with vertically implanted concentric probes. Doses selected were in the range of those known to sustain drug self-administration in rats. Morphine, at 0.2 and 0.4 mg/kg, and cocaine, at 0.5 mg/kg, increased extracellular dopamine selectivity in the shell. Higher doses of cocaine (1.0 mg/kg) and the lowest dose of amphetamine tested (0.125 mg/kg) increased extracellular dopamine both in the shell and in the core, but the effect was significantly more pronounced in the shell compared with the core. Only the highest dose of amphetamine (0.250 mg/kg) increased extracellular dopamine in the shell and in the core to a similar extent. The present results provide in vivo neurochemical evidence for a functional compartmentation within the nucleus accumbens and for a preferential effect of psychostimulants and morphine in the shell of the nucleus accumbens at doses known to sustain intravenous drug self-administration.
Resumo:
Seasonal changes of daylength (photoperiod) affect the expression of hormonal and behavioral circadian rhythms in a variety of organisms. In mammals, such effects might reflect photoperiodic changes in the circadian pace-making system [located in the suprachiasmatic nucleus (SCN) of the hypothalamus] that governs these rhythms, but to date no functionally relevant, intrinsic property of the SCN has been shown to be photoperiod dependent. We have analyzed the temporal regulation of light-induced c-fos gene expression in the SCN of rats maintained in long or short photoperiods. Both in situ hybridization and immunohistochemical assays show that the endogenous circadian rhythm of light responsiveness in the SCN is altered by photoperiod, with the duration of the photosensitive subjective night under the short photoperiod 5-6 h longer than under the long photoperiod. Our results provide evidence that a functional property of the SCN is altered by photoperiod and suggest that the nucleus is involved in photoperiodic time measurement.
Resumo:
In the rat suprachiasmatic nucleus slice culture, circadian rhythms in the release of arginine vasopressin and vasoactive intestinal polypeptide were measured simultaneously and longitudinally. The phase relationship between the two peptide rhythms was relatively constant in the culture without a treatment of antimitotic drugs but became diverse by an introduction of antimitotics, which is generally used to reduce the number of glial cells. By monitoring the two rhythms continuously for 6 days, different periods were detected in culture with the antimitotic treatment. Furthermore, N-methyl-D-aspartate shifted the phase of the two peptide rhythms in the same culture differently. These results indicate that the arginine vasopressin and vasoactive intestinal polypeptide release are under control of different circadian oscillators.
Resumo:
Nuclei of digitonin-permeabilized cells that had been preloaded with a model transport substrate in a cytosol-dependent import reaction were subsequently incubated to investigate which conditions would result in export of transport substrate. We found that up to 80% of the imported substrate was exported when recombinant human Ran and GTP were present in the export reaction. Ran-mediated export was inhibited by nonhydrolyzable GTP analogs and also by wheat germ agglutinin but was unaffected by a nonhydrolyzable ATP analog. Moreover, a recombinant human Ran mutant that was deficient in its GTPase activity inhibited export. These data indicate that export of proteins from the nucleus requires Ran and GTP hydrolysis but not ATP hydrolysis. We also found that digitonin-permeabilized cells were depleted of their endogenous nuclear Ran, thus allowing detection of Ran as a limiting factor for export. In contrast, most endogenous karyopherin alpha was retained in nuclei of digitonin-permeabilized cells. Unexpectedly, exogenously added, fluorescently labeled Ran, although it accessed the nuclear interior, was found to dock at the nuclear rim in a punctate pattern, suggesting the existence of Ran-binding sites at the nuclear pore complex.