56 resultados para Cancer Cells


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cyclin D1 is expressed at abnormally high levels in many cancers and has been specifically implicated in the development of breast cancer. In this report we have extensively analyzed the cyclin D1 promoter in a variety of cancer cell lines that overexpress the protein and identified two critical regulatory elements (CREs), a previously identified CRE at –52 and a novel site at –30. In vivo footprinting experiments demonstrated factors binding at both sites. We have used a novel DNA-binding ligand, GL020924, to target the site at –30 (–30–21) of the cyclin D1 promoter in MCF7 breast cancer cells. A binding site for this novel molecule was constructed by mutating 2 bp of the wild-type cyclin D1 promoter at the –30–21 site. Treatment with GL020924 specifically inhibited expression of the targeted cyclin D1 promoter construct in MCF7 cells in a concentration-dependent manner, thus validating the –30–21 site as a target for minor groove-binding ligands. In addition, this result validates our approach to regulating the expression of genes implicated in disease by targeting small DNA-binding ligands to key regulatory elements in the promoters of those genes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The carbohydrate antigen globo H commonly found on breast cancer cells is a potential target for vaccine therapy. The objectives of this trial were to determine the toxicity and immunogenicity of three synthetic globo H-keyhole limpet hemocyanin conjugates plus the immunologic adjuvant QS-21. Twenty-seven metastatic breast cancer patients received five vaccinations each. The vaccine was well tolerated, and no definite differences were observed among the three formulations. Serologic analyses demonstrated the generation of IgM antibody titers in most patients, with minimal IgG antibody stimulation. There was significant binding of IgM antibodies to MCF-7 tumor cells in 16 patients, whereas IgG antibody reactivity was observed in a few patients. There was evidence of complement-dependent cytotoxicity in several patients. Affinity column purification supported the specificity of IgM antibodies for globo H. On the basis of these data, globo H will constitute one component of a polyvalent vaccine for evaluation in high-risk breast cancer patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

DETA-NONOate, a nitric oxide (NO) donor, induced cytostasis in the human breast cancer cells MDA-MB-231, and the cells were arrested in the G1 phase of the cell cycle. This cytostatic effect of the NO donor was associated with the down-regulation of cyclin D1 and hypophosphorylation of the retinoblastoma protein. No changes in the levels of cyclin E or the catalytic partners of these cyclins, CDK2, CDK4, or CDK6, were observed. This NO-induced cytostasis and decrease in cyclin D1 was reversible for up to 48 h of DETA-NONOate (1 mM) treatment. DETA-NONOate (1 mM) produced a steady-state concentration of 0.5 μM of NO over a 24-h period. Synchronized population of the cells exposed to DETA-NONOate remained arrested at the G1 phase of the cell cycle whereas untreated control cells progressed through the cell cycle after serum stimulation. The cells arrested at the G1 phase after exposure to the NO donor had low cyclin D1 levels compared with the control cells. The levels of cyclin E and CDK4, however, were similar to the control cells. The decline in cyclin D1 protein preceded the decrease of its mRNA. This decline of cyclin D1 was due to a decrease in its synthesis induced by the NO donor and not due to an increase in its degradation. We conclude that down-regulation of cyclin D1 protein by DETA-NONOate played an important role in the cytostasis and arrest of these tumor cells in the G1 phase of the cell cycle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

2′-O-(2-methoxyethyl) (2′-MOE) RNA possesses favorable pharmocokinetic properties that make it a promising option for the design of oligonucleotide drugs. Telomerase is a ribonucleoprotein that is up-regulated in many types of cancer, but its potential as a target for chemotherapy awaits the development of potent and selective inhibitors. Here we report inhibition of human telomerase by 2′-MOE RNA oligomers that are complementary to the RNA template region. Fully complementary oligomers inhibited telomerase in a cell extract with IC50 values of 5–10 nM at 37°C. IC50 values for mismatch-containing oligomers varied with length and phosphorothioate substitution. After introduction into DU 145 prostate cancer cells inhibition of telomerase activity persisted for up to 7 days, equivalent to six population doublings. Inside cells discrimination between complementary and mismatch-containing oligomers increased over time. Our results reveal two oligomers as especially promising candidates for initiation of in vivo preclinical trials and emphasize that conclusions regarding oligonucleotide efficacy and specificity in cell extracts do not necessarily offer accurate predictions of activity inside cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BRCA1 is a breast and ovarian cancer-specific tumor suppressor that seems to be involved in transcription and DNA repair. Here we report that BRCA1 exhibits a bona fide ubiquitin (Ub) protein ligase (E3) activity, and that cancer-predisposing mutations within the BRCA1 RING domain abolish its Ub ligase activity. Furthermore, these mutants are unable to reverse γ-radiation hypersensitivity of BRCA1-null human breast cancer cells, HCC1937. Additionally, these mutations within the BRCA1 RING domain are not capable of restoring a G2 + M checkpoint in HCC1937 cells. These results establish a link between Ub protein ligase activity and γ-radiation protection function of BRCA1, and provide an explanation for why mutations within the BRCA1 RING domain predispose to cancer. Furthermore, we propose that the analysis of the Ub ligase activity of RING-domain mutations identified in patients may constitute an assay to predict predisposition to cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cancer is a disease characterized by defects in growth control, and tumor cells often display abnormal patterns of cellular differentiation. The combination of recombinant human fibroblast interferon and the antileukemic agent mezerein corrects these abnormalities in cultured human melanoma cells resulting in irreversible growth arrest and terminal differentiation. Subtraction hybridization identifies a melanoma differentiation associated gene (mda-7) with elevated expression in growth arrested and terminally differentiated human melanoma cells. Colony formation decreases when mda-7 is transfected into human tumor cells of diverse origin and with multiple genetic defects. In contrast, the effects of mda-7 on growth and colony formation in transient transfection assays with normal cells, including human mammary epithelial, human skin fibroblast, and rat embryo fibroblast, is quantitatively less than that found with cancer cells. Tumor cells expressing elevated mda-7 display suppression in monolayer growth and anchorage independence. Infection with a recombinant type 5 adenovirus expressing antisense mda-7 eliminates mda-7 suppression of the in vitro growth and transformed phenotype. The ability of mda-7 to suppress growth in cancer cells not expressing or containing defects in both the retinoblastoma (RB) and p53 genes indicates a lack of involvement of these critical tumor suppressor elements in mediating mda-7-induced growth inhibition. The lack of protein homology of mda-7 with previously described growth suppressing genes and the differential effect of this gene on normal versus cancer cells suggests that mda-7 may represent a new class of cancer growth suppressing genes with antitumor activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human gene MAGE-1 encodes tumor-specific antigens that are recognized on melanoma cells by autologous cytolytic T lymphocytes. This gene is expressed in a significant proportion of tumors of various histological types, but not in normal tissues except male germ-line cells. We reported previously that reporter genes driven by the MAGE-1 promoter are active not only in the tumor cell lines that express MAGE-1 but also in those that do not. This suggests that the critical factor causing the activation of MAGE-1 in certain tumors is not the presence of the appropriate transcription factors. The two major MAGE-1 promoter elements have an Ets binding site, which contains a CpG dinucleotide. We report here that these CpG are demethylated in the tumor cell lines that express MAGE-1, and are methylated in those that do not express the gene. Methylation of these CpG inhibits the binding of transcription factors, as seen by mobility shift assay. Treatment with the demethylating agent 5-aza-2'-deoxycytidine activated gene MAGE-1 not only in tumor cell lines but also in primary fibroblasts. Finally, the overall level of CpG methylation was evaluated in 20 different tumor cell lines. It was inversely correlated with the expression of MAGE-1. We conclude that the activation of MAGE-1 in cancer cells is due to the demethylation of the promoter. This appears to be a consequence of a genome-wide demethylation process that occurs in many cancers and is correlated with tumor progression.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The primary metabolic characteristic of malignant cells is an increased uptake of glucose and its anaerobic metabolism. We studied the expression and function of the glucose transporters in human breast cancer cell lines and analyzed their expression in normal and neoplastic primary human breast tissue. Hexose uptake assays and immunoblotting experiments revealed that the breast carcinoma cell lines MCF-7 and MDA-468 express the glucose transporters GLUT1 and GLUT2, isoforms expressed in both normal and neoplastic breast tissue. We also found that the breast cancer cell lines transport fructose and express the fructose transporter GLUT5. Immunolocalization studies revealed that GLUT5 is highly expressed in vivo in human breast cancer but is absent in normal human breast tissue. These findings indicate that human breast cancer cells have a specialized capacity to transport fructose, a metabolic substrate believed to be used by few human tissues. Identification of a high-affinity fructose transporter on human breast cancer cells opens opportunities to develop novel strategies for early diagnosis and treatment of breast cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human cancer cells with a mutated p53 tumor-suppressor gene have a selective growth advantage and may exhibit resistance to ionizing radiation and certain chemotherapeutic agents. To examine the prognostic value of mutations in the p53 gene, a cohort of 90 Midwestern Caucasian breast cancer patients were analyzed with methodology that detects virtually 100% of all mutations. The presence of a p53 gene mutation was by far the single most predictive indicator for recurrence and death (relative risks of 4.7 and 23.2, respectively). Direct detection of p53 mutations had substantially greater prognostic value than immunohistochemical detection of p53 overexpression. Analysis of p53 gene mutations may permit identification of a subset of breast cancer patients who, despite lack of conventional indicators of poor prognosis, are at high risk of early recurrence and death.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tumors that metastasize do so to preferred target organs. To explain this apparent specificity, Paget, > 100 years ago, formulated his seed and soil hypothesis; i.e., the cells from a given tumor would "seed'' only favorable "soil'' offered by certain groups. The hypothesis implies that cancer cells must find a suitable "soil'' in a target organ--i.e., one that supports colonization--for metastasis to occur. We demonstrate in this report that ability of human colon cancer cells to colonize liver tissue governs whether a particular colon cancer is metastatic. In the model used in this study, human colon tumors are transplanted into the nude mouse colon as intact tissue blocks by surgical orthotopic implantation. These implanted tumors closely simulate the metastatic behavior of the original human patient tumor and are clearly metastatic or nonmetastatic to the liver. Both classes of tumors were equally invasive locally into tissues and blood vessels. However, the cells from each class of tumor behave very differently when directly injected into nude mouse livers. Only cells from metastasizing tumors are competent to colonize after direct intrahepatic injection. Also, tissue blocks from metastatic tumors af fixed directly to the liver resulted in colonization, whereas no colonization resulted from nonmetastatic tumor tissue blocks even though some growth occurred within the tissue block itself. Thus, local invasion (injection) and even adhesion to the metastatic target organ (blocks) are not sufficient for metastasis. The results suggest that the ability to colonize the liver is the governing step in the metastasis of human colon cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although both CD4+ and CD8+ T cells are clearly required to generate long-lasting anti-tumor immunity induced by s.c. vaccination with interleukin 2 (IL-2)-transfected, irradiated M-3 clone murine melanoma cells, some controversy continues about the site and mode of T-cell activation in this system. Macrophages, granulocytes, and natural killer cells infiltrate the vaccination site early after injection into either syngeneic euthymic DBA/2 mice or athymic nude mice and eliminate the inoculum within 48 hr. We could not find T cells at the vaccination site, which argues against the concept that T-cell priming by the IL-2-secreting cancer cells occurs directly at that location. However, reverse transcription-PCR revealed transcripts indicative of T-cell activation and expansion in the draining lymph nodes of mice immunized with the IL-2-secreting vaccine but not in mice vaccinated with untransfected, irradiated M-3 cells. We therefore propose that the antigen-presenting cells, which invade the vaccination site, process tumor-derived antigens and, subsequently, initiate priming of tumor-specific T lymphocytes in lymphoid organs. These findings suggest a three-stage process for the generation of effector T cells after vaccination with IL-2-secreting tumor cells: (i) tumor-antigen uptake and processing at the site of injection by antigen-presenting cells, (ii) migration of antigen-presenting cells into the regional draining lymph nodes, where T-cell priming occurs, and (iii) circulation of activated T cells that either perform or initiate effector mechanisms leading to tumor cell destruction.