56 resultados para COX-2 INHIBITORS
Resumo:
Cytotoxic T lymphocytes are important effectors of antiviral immunity, and they induce target cell death either by secretion of cytoplasmic granules containing perforin and granzymes or by signaling through the Fas cell surface antigen. Although it is not known whether the granule-mediated and Fas-mediated cytolytic mechanisms share common components, proteinase activity has been implicated as an important feature of both pathways. The orthopoxviruses cowpox virus and rabbitpox virus each encode three members of the serpin family of proteinase inhibitors, designated SPI-1, SPI-2, and SPI-3. Of these, SPI-2 (also referred to as cytokine response modifier A in cowpox virus) has been shown to inhibit the proteolytic activity of both members of the interleukin 1 beta converting enzyme family and granzyme B. We report here that cells infected with cowpox or rabbitpox viruses exhibit resistance to cytolysis by either cytolytic mechanism. Whereas mutation of the cytokine response modifier A/SPI-2 gene was necessary to relieve inhibition of Fasmediated cytolysis, in some cell types mutation of SPI-1, in addition to cytokine response modifier A/SPI-2, was necessary to completely abrogate inhibition. In contrast, viral inhibition of granule-mediated killing was unaffected by mutation of cytokine response modifier A/SPI-2 alone, and it was relieved only when both the cytokine response modifier A/SPI-2 and SPI-1 genes were inactivated. These results suggest that an interleukin 1 beta converting enzyme-like enzymatic activity is involved in both killing mechanisms and indicate that two viral proteins, SPI-1 and cytokine response modifier A/SPI-2, are necessary to inhibit both cytolysis pathways.
Resumo:
A large family of isoquinoline sulfonamide compounds inhibits protein kinases by competing with adenosine triphosphates(ATP), yet interferes little with the activity of other ATP-using enzymes such as ATPases and adenylate cyclases. One such compound, N-(2-aminoethyl)-5-chloroisoquinoline-8-sulfonamide (CK17), is selective for casein kinase-1 isolated from a variety of sources. Here we report the crystal structure of the catalytic domain of Schizosaccharomyces pombe casein kinase-1 complexed with CK17, refined to a crystallographic R-factor of 17.8% at 2.5 angstrom resolution. The structure provides new insights into the mechanism of the ATP-competing inhibition and the origin of their selectivity toward different protein kinases. Selectivity for protein kinases versus other enzymes is achieved by hydrophobic contacts and the hydrogen bond with isoquinoline ring. We propose that the hydrogen bond involving the ring nitrogen-2 atom of the isoquinoline must be preserved, but that the ring can flip depending on the chemical substituents at ring positions 5 and 8. Selectivity for individual members of the protein kinase family is achieved primarily by interactions with these substituents.
Resumo:
Treatment of quiescent Swiss 3T3 fibroblasts with serum, or with the phosphatase inhibitors okadaic acid and vanadate, induced a 2- to 11-fold activation of the serine/ threonine RAC protein kinase (RAC-PK). Kinase activation was accompanied by decreased mobility of RAC-PK on SDS/PAGE such that three electrophoretic species (a to c) of the kinase were detected by immunoblot analysis, indicative of differentially phosphorylated forms. Addition of vanadate to arrested cells increased the RAC-PK phosphorylation level 3-to 4-fold. Unstimulated RAC-PK was phosphorylated predominantly on serine, whereas the activated kinase was phosphorylated on both serine and threonine residues. Treatment of RAC-PK in vitro with protein phosphatase 2A led to kinase inactivation and an increase in electrophoretic mobility. Deletion of the N-terminal region containing the pleckstrin homology domain did not affect RAC-PK activation by okadaic acid, but it reduced vanadate-stimulated activity and also blocked the serum-induced activation. Deletion of the serine/threonine rich C-terminal region impaired both RAC-PKalpha basal and vanadate-stimulated activity. Studies using a kinase-deficient mutant indicated that autophosphorylation is not involved in RAC-PKalpha activation. Stimulation of RAC-PK activity and electrophoretic mobility changes induced by serum were sensitive to wortmannin. Taken together the results suggest that RAC-PK is a component of a signaling pathway regulated by phosphatidylinositol (PI) 3-kinase, whose action is required for RAC-PK activation by phosphorylation.
Resumo:
Arachidonic acid (AA) metabolites derived from both cyclooxygenase (COX) and lipoxygenase (LOX) pathways transduce a variety of signals related to cell growth. Here, we report that the AA LOX pathway also functions as a critical regulator of cell survival and apoptosis. Rat Walker 256 (W256) carcinosarcoma cells express 12-LOX and synthesize 12(S)- and 15(S)-hydroxyeicosatetraenoic acids as their major LOX metabolites. W256 cells transfected with 12-LOX-specific antisense oligonucleotide or antisense oligonucleotides directed to conserved regions of LOXs underwent time- and dose-dependent apoptosis. Likewise, treatment of W256 cells with various LOX but not COX inhibitors induced apoptotic cell death, which could be partially inhibited by exogenous 12(S)- or 15(S)-hydroxyeicosatetraenoic acids. The W256 cell apoptosis induced by antisense oligos and LOX inhibitors was followed by a rapid downregulation of bcl-2 protein, a dramatic decrease in the bcl-2/bax ratio, and could be suppressed by bcl-2 overexpression. In contrast, p53, which is wild type in W256 cells, did not undergo alterations during apoptosis induction. The results suggest that the LOX pathway plays an important physiological role in regulating apoptosis.
Resumo:
Evidence from epidemiological studies, clinical trials, and animal experiments indicates that inhibitors of prostaglandin synthesis lower the risk of colon cancer. We tested the hypothesis that abnormal expression of prostaglandin H synthase 2 (PHS-2), which can be induced by oncogenes and tumor promoters, occurs during colon carcinogenesis by examining its level in colon tumors. Human colon cancers were found to have an increased expression of PHS-2 mRNA compared with normal colon specimens from the same patient (n = 5). In situ hybridization showed that the neoplastic colonocytes had increased expression of PHS-2 (n = 4). Additionally, five colon cancer cell lines were shown to express high levels of PHS-2 mRNA even in the absence of a known inducer of PHS-2. To study the basis for this increased gene expression, we transfected a colon cancer cell line, HCT-116, with a reporter gene containing 2.0 kb of the 5' regulatory sequence of the PHS-2 gene. Constitutive transcription of the reporter gene was observed, whereas normal control cell lines transcribed the reporter only in response to an exogenous agonist. We conclude that PHS-2 is transcribed abnormally in human colon cancers and that this may be one mechanism by which prostaglandins or related compounds that support carcinogenesis are generated.
Resumo:
The three-dimensional structure of murine mitochondrial carbonic anhydrase V has been determined and refined at 2.45-A resolution (crystallographic R factor = 0.187). Significant structural differences unique to the active site of carbonic anhydrase V are responsible for differences in the mechanism of catalytic proton transfer as compared with other carbonic anhydrase isozymes. In the prototypical isozyme, carbonic anhydrase II, catalytic proton transfer occurs via the shuttle group His-64; carbonic anhydrase V has Tyr-64, which is not an efficient proton shuttle due in part to the bulky adjacent side chain of Phe-65. Based on analysis of the structure of carbonic anhydrase V, we speculate that Tyr-131 may participate in proton transfer due to its proximity to zinc-bound solvent, its solvent accessibility, and its electrostatic environment in the protein structure. Finally, the design of isozyme-specific inhibitors is discussed in view of the complex between carbonic anhydrase V and acetazolamide, a transition-state analogue. Such inhibitors may be physiologically important in the regulation of blood glucose levels.
Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis.
Resumo:
Benzoic acid 2-hydroxylase (BA2H) catalyzes the biosynthesis of salicylic acid from benzoic acid. The enzyme has been partially purified and characterized as a soluble protein of 160 kDa. High-efficiency in vivo labeling of salicylic acid with 18O2 suggested that BA2H is an oxygenase that specifically hydroxylates the ortho position of benzoic acid. The enzyme was strongly induced by either tobacco mosaic virus inoculation or benzoic acid infiltration of tobacco leaves and it was inhibited by CO and other inhibitors of cytochrome P450 hydroxylases. The BA2H activity was immunodepleted by antibodies raised against SU2, a soluble cytochrome P450 from Streptomyces griseolus. The anti-SU2 antibodies immunoprecipitated a radiolabeled polypeptide of around 160 kDa from the soluble protein extracts of L-[35S]-methionine-fed tobacco leaves. Purified BA2H showed CO-difference spectra with a maximum at 457 nm. These data suggest that BA2H belongs to a novel class of soluble, high molecular weight cytochrome P450 enzymes.
Resumo:
We and other groups have recently reported the potentiation by ribonucleotide reductase inhibitors such as hydroxyurea of the anti-human immunodeficiency virus type 1 (HIV-1) activity of purine and pyrimidine 2',3'-dideoxynucleosides in both resting and phytohemagglutinin-stimulated peripheral blood mononuclear cells. Little agreement prevails, however, as to the mechanism of the synergistic effects described. We report here that in phytohemagglutinin-stimulated peripheral blood mononuclear cells, two mechanisms exist for the potentiation of the anti-HIV-1 activity by low-dose hydroxyurea of the purine-based dideoxynucleoside 2',3'-dideoxyinosine and the pyrimidine-based dideoxynucleosides 3'-azido-3'-deoxythymidine and 2',3'-dideoxycytidine. For 2',3'-dideoxyinosine, the enhancement arises from a specific depletion of dATP by hydroxyurea, resulting in a favorable shift of the 2',3'-dideoxyadenosine 5'-triphosphate/dATP ratio. For the pyrimidine dideoxynucleosides 3'-azido-3'-deoxythymidine and 2',3'-dideoxycytidine, the more modest anti-HIV enhancement results from hydroxyurea-induced increases of pyrimidine kinase activities in the salvage pathway and, hence, increased 5'-phosphorylation of these drugs, while depletion of the corresponding deoxynucleoside 5'-triphosphates (dTTP and dCTP) plays no significant role.
Resumo:
Tobacco plants were transformed with a cDNA clone of chymotrypsin/trypsin-specific potato proteinase inhibitor II (PI2) under the control of a constitutive promoter. Although considerable levels of transgene expression could be demonstrated, the growth of Spodoptera exigua larvae fed with detached leaves of PI2-expressing plants was not affected. Analysis of the composition of tryptic gut activity demonstrated that only 18% of the proteinase activity of insects reared on these transgenic plants was sensitive to inhibition by PI2, whereas 78% was sensitive in insects reared on control plants. Larvae had compensated for this loss of tryptic activity by a 2.5-fold induction of new activity that was insensitive to inhibition by PI2. PI2-insensitive proteolytic activity was also induced in response to endogenous proteinase inhibitors of tobacco; therefore, induction of such proteinase activity may represent the mechanism by which insects that feed on plants overcome plant proteinase inhibitor defense.
Resumo:
We have synthesized two sets of noncleavable peptide-inhibitor libraries to map the S and S' subsites of human heart chymase. Human heart chymase is a chymotrypsin-like enzyme that converts angiotensin I to angiotensin II. The first library consists of peptides with 3-fluorobenzylpyruvamides in the P1 position. (Amino acid residues of substrates numbered P1, P2, etc., are toward the N-terminal direction, and P'1, P'2, etc., are toward the C-terminal direction from the scissile bond.) The P'1 and P'2 positions were varied to contain each one of the 20 naturally occurring amino acids and P'3 was kept constant as an arginine. The second library consists of peptides with phenylalanine keto-amides at P1, glycine in P'1, and benzyloxycarbonyl (Z)-isoleucine in P4. The P2 and P3 positions were varied to contain each of the naturally occurring amino acids, except for cysteine and methionine. The peptides of both libraries are attached to a solid support (pins). The peptides are evaluated by immersing the pins in a solution of the target enzyme and evaluating the amount of enzyme absorbed. The pins with the best inhibitors will absorb most enzyme. The libraries select the best and worst inhibitors within each group of peptides and provide an approximate ranking of the remaining peptides according to Ki. Through this library, we determined that Z-Ile-Glu-Pro-Phe-CO2Me and (F)-Phe-CO-Glu-Asp-ArgOMe should be the best inhibitors of chymase in this collection of peptide inhibitors. We synthesized the peptides and found Ki values were 1 nM and 1 microM, respectively. The corresponding Ki values for chymotrypsin were 10 nM and 100 microM. The use of libraries of inhibitors has advantages over the classical method of synthesis of potential inhibitors in solution: the libraries are reusable, the same libraries can be used with a variety of different serine proteases, and the method allows the screening of hundreds of compounds in short periods of time.
Resumo:
Five structurally related thiophene and furane analogues of the oxathiin carboxanilide derivative NSC 615985 (UC84) (designated UC10, UC68, UC81, UC42, and UC16) were identified as potent inhibitors of HIV-1 replication in cell culture and HIV-1 reverse transcriptase activity. These compounds were markedly active against a series of mutant HIV-1 strains, containing the Leu-100-->Ile, Val-106-->Ala, Glu-138-->Lys, or Tyr-181-->Cys mutations in their reverse transcriptase. However, the thiocarboxanilide derivatives selected for mutations at amino acid positions 100 (Leu-->Ile), 101 (Lys-->Ile/Glu), 103 (Lys-->Thr/Asp) and 141 (Gly-->Glu) in the HIV-1 reverse transcriptase. The compounds completely suppressed HIV-1 replication and prevented the emergence of resistant virus strains when used at 1.3-6.6 microM--that is, 10- to 25-fold lower than the concentration required for nevirapine and bis(heteroaryl)piperazine (BHAP) U90152 to do so. If UC42 was combined with the [2',5'-bis-O-(tert-butyldimethylsilyl)-3'-spiro-5"-(4"-amino-1",2"- oxathiole-2",2"-dioxide)]-beta-D-pentofuranosyl (TSAO) derivative of N3-methylthymine (TSAO-m3T), virus breakthrough could be prevented for a much longer time, and at much lower concentrations, than if the compounds were used individually. Virus breakthrough could be suppressed for even longer, and at lower drug concentrations, if BHAP was added to the combination of UC42 with TSAO-m3T, which points to the feasibility of two- or three-drug combinations in preventing virus breakthrough and resistance development.