117 resultados para COEXPRESSION
Resumo:
Tyrosine phosphorylation of focal adhesion kinase (FAK) creates a high-affinity binding site for the src homology 2 domain of the Src family of tyrosine kinases. Assembly of a complex between FAK and Src kinases may serve to regulate the subcellular localization and the enzymatic activity of members of the Src family of kinases. We show that simultaneous overexpression of FAK and pp60c-src or p59fyn results in the enhancement of the tyrosine phosphorylation of a limited number of cellular substrates, including paxillin. Under these conditions, tyrosine phosphorylation of paxillin is largely cell adhesion dependent. FAK mutants defective for Src binding or focal adhesion targeting fail to cooperate with pp60c-src or p59fyn to induce paxillin phosphorylation, whereas catalytically defective FAK mutants can direct paxillin phosphorylation. The negative regulatory site of pp60c-src is hypophosphorylated when in complex with FAK, and coexpression with FAK leads to a redistribution of pp60c-src from a diffuse cellular location to focal adhesions. A FAK mutant defective for Src binding does not effectively induce the translocation of pp60c-src to focal adhesions. These results suggest that association with FAK can alter the localization of Src kinases and that FAK functions to direct phosphorylation of cellular substrates by recruitment of Src kinases.
Resumo:
Amphiphysin (Amph) is a src homology 3 domain-containing protein that has been implicated in synaptic vesicle endocytosis as a result of its interaction with dynamin. In a screen for novel members of the amphiphysin family, we identified Amph2, an isoform 49% identical to the previously characterized Amph1 protein. The subcellular distribution of this isoform parallels Amph1, both being enriched in nerve terminals. Like Amph1, a role in endocytosis at the nerve terminal is supported by the rapid dephosphorylation of Amph2 on depolarization. Importantly, the two isoforms can be coimmunoprecipitated from the brain as an equimolar complex, suggesting that the two isoforms act in concert. As determined by cross-linking of brain extracts, the Amph1–Amph2 complex is a 220- to 250-kDa heterodimer. COS cells transfected with either Amph1 or Amph2 show greatly reduced transferrin uptake, but coexpression of the two proteins rescues this defect, supporting a role for the heterodimer in clathrin-mediated endocytosis. Although the src homology 3 domains of both isoforms interact with dynamin, the heterodimer can associate with multiple dynamin molecules in vitro and activates dynamin’s GTPase activity. We propose that it is an amphiphysin heterodimer that drives the recruitment of dynamin to clathrin-coated pits in endocytosing nerve terminals.
The Rat Myosin myr 5 Is a GTPase-activating Protein for Rho In Vivo: Essential Role of Arginine 1695
Resumo:
myr 5 is an unconventional myosin (class IX) from rat that contains a Rho-family GTPase-activating protein (GAP) domain. Herein we addressed the specificity of the myr 5 GAP activity, the molecular mechanism by which GAPs activate GTP hydrolysis, the consequences of myr 5 overexpression in living cells, and its subcellular localization. The myr 5 GAP activity exhibits a high specificity for Rho. To achieve similar rates of GTPase activation for RhoA, Cdc42Hs, and Rac1, a 100-fold or 1000-fold higher concentration of recombinant myr 5 GAP domain was needed for Cdc42Hs or Rac1, respectively, as compared with RhoA. Cell lysates from Sf9 insect cells infected with recombinant baculovirus encoding myr 5 exhibited increased GAP activity for RhoA but not for Cdc42Hs or Rac1. Analysis of Rho-family GAP domain sequences for conserved arginine residues that might contribute to accelerate GTP hydrolysis revealed a single conserved arginine residue. Mutation of the corresponding arginine residue in the myr 5 GAP domain to a methionine (M1695) virtually abolished Rho-GAP activity. Expression of myr 5 in Sf9 insect cells induced the formation of numerous long thin processes containing occasional varicosities. Such morphological changes were dependent on the myr 5 Rho-GAP activity, because they were induced by expressing the myr 5 tail or just the myr 5 Rho-GAP domain but not by expressing the myr 5 myosin domain. Expression of myr 5 in mammalian normal rat kidney (NRK) or HtTA-1 HeLa cells induced a loss of actin stress fibers and focal contacts with concomitant morphological changes and rounding up of the cells. Similar morphological changes were observed in HtTA-1 HeLa cells expressing just the myr 5 Rho-GAP domain but not in cells expressing myr 5 M1695. These morphological changes induced by myr 5 were inhibited by coexpression of RhoV14, which is defective in GTP hydrolysis, but not by RhoI117. myr 5 was localized in dynamic regions of the cell periphery, in the perinuclear region in the Golgi area, along stress fibers, and in the cytosol. These results demonstrate that myr 5 has in vitro and in vivo Rho-GAP activity. No evidence for a Rho effector function of the myr 5 myosin domain was obtained.
Resumo:
The docking and fusion of cargo-containing vesicles with target membranes of eukaryotic cells is mediated by the interaction of SNARE proteins present on both vesicle and target membranes. In many cases, the target membrane SNARE, or t-SNARE, exists as a complex of syntaxin with a member of the SNAP-25 family of palmitoylated proteins. We have identified a novel human kinase SNAK (SNARE kinase) that specifically phosphorylates the nonneuronal t-SNARE SNAP-23 in vivo. Interestingly, only SNAP-23 that is not assembled into t-SNARE complexes is phosphorylated by SNAK, and phosphorylated SNAP-23 resides exclusively in the cytosol. Coexpression with SNAK significantly enhances the stability of unassembled SNAP-23, and as a consequence, the assembly of newly synthesized SNAP-23 with syntaxin is augmented. These data demonstrate that phosphorylation of SNAP-23 by SNAK enhances the kinetics of t-SNARE assembly in vivo.
Resumo:
It was previously shown that coexpression of the lactose permease of Escherichia coli in two contiguous fragments leads to functional complementation. We demonstrate here that site-directed thiol crosslinking of coexpressed permease fragments can be used to determine helix proximity in situ without the necessity of purifying the permease. After coexpression of the six N-terminal (N6) and six C-terminal (C6) transmembrane helices, each with a single Cys residue, crosslinking was carried out in native membranes and assessed by the mobility of anti-C-terminal-reactive polypeptides on immunoblots. A Cys residue at position 242 or 245 (helix VII) forms a disulfide with a Cys residue at either position 28 or 29 (helix I), but not with a Cys residue at position 27, which is on the opposite face of helix I, thereby indicating that the face of helix I containing Pro-28 and Phe-29 is close to helix VII. Similarly, a Cys residue at position 242 or 245 (helix VII) forms a disulfide with a Cys residue at either position 52 or 53 (helix II), but not with a Cys residue at position 54. Furthermore, low-efficiency crosslinking is observed between a Cys residue at position 52 or 53 and a Cys residue at position 361 (helix XI). The results indicate that helix VII lies in close proximity to both helices I and II and that helix II is also close to helix XI. The method should be applicable to a number of different polytopic membrane proteins.
Resumo:
Voltage-gated K+ channels are complexes of membrane-bound, ion-conducting α and cytoplasmic ancillary (β) subunits. The primary physiologic effect of coexpression of α and β subunits is to increase the intrinsic rate of inactivation of the α subunit. For one β subunit, Kvβ1.1, inactivation is enhanced through an N-type mechanism. A second β subunit, Kvβ1.2, has been shown to increase inactivation, but through a distinct mechanism. Here we show that the degree of enhancement of Kvβ1.2 inactivation is dependent on the amino acid composition in the pore mouth of the α subunit and the concentration of extracellular K+. Experimental conditions that promote C-type inactivation also enhance the stimulation of inactivation by Kvβ1.2, showing that this β subunit directly stimulates C-type inactivation. Chimeric constructs containing just the nonconserved N-terminal region of Kvβ1.2 fused with an α subunit behave in a similar fashion to coexpressed Kvβ1.2 and α subunit. This shows that it is the N-terminal domain of Kvβ1.2 that mediates the increase in C-type inactivation from the cytoplasmic side of the pore. We propose a model whereby the N terminus of Kvβ1.2 acts as a weakly binding “ball” domain that associates with the intracellular vestibule of the α subunit to effect a conformational change leading to enhancement of C-type inactivation.
Resumo:
Sodium homeostasis in terrestrial and freshwater vertebrates is controlled by the corticosteroid hormones, principally aldosterone, which stimulate electrogenic Na+ absorption in tight epithelia. Although aldosterone is known to increase apical membrane Na+ permeability in target cells through changes in gene transcription, the mechanistic basis of this effect remains poorly understood. The predominant early effect of aldosterone is to increase the activity of the epithelial sodium channel (ENaC), although ENaC mRNA and protein levels do not change initially. Rather, the open probability and/or number of channels in the apical membrane are greatly increased by unknown modulators. To identify hormone-stimulated gene products that modulate ENaC activity, a subtracted cDNA library was generated from A6 cells, a stable cell line of renal distal nephron origin, and the effect of candidates on ENaC activity was tested in a coexpression assay. We report here the identification of sgk (serum and glucocorticoid-regulated kinase), a member of the serine–threonine kinase family, as an aldosterone-induced regulator of ENaC activity. sgk mRNA and protein were strongly and rapidly hormone stimulated both in A6 cells and in rat kidney. Furthermore, sgk stimulated ENaC activity approximately 7-fold when they were coexpressed in Xenopus laevis oocytes. These data suggest that sgk plays a central role in aldosterone regulation of Na+ absorption and thus in the control of extracellular fluid volume, blood pressure, and sodium homeostasis.
Resumo:
Transgenic overexpression of Gαq in the heart triggers events leading to a phenotype of eccentric hypertrophy, depressed ventricular function, marked expression of hypertrophy-associated genes, and depressed β-adrenergic receptor (βAR) function. The role of βAR dysfunction in the development of this failure phenotype was delineated by transgenic coexpression of the carboxyl terminus of the βAR kinase (βARK), which acts to inhibit the kinase, or concomitant overexpression of the β2AR at low (≈30-fold, Gαq/β2ARL), moderate (≈140-fold, Gαq/β2ARM), and high (≈1,000-fold, Gαq/β2ARH) levels above background βAR density. Expression of the βARK inhibitor had no effect on the phenotype, consistent with the lack of increased βARK levels in Gαq mice. In marked contrast, Gαq/β2ARL mice displayed rescue of hypertrophy and resting ventricular function and decreased cardiac expression of atrial natriuretic factor and α-skeletal actin mRNA. These effects occurred in the absence of any improvement in basal or agonist-stimulated adenylyl cyclase (AC) activities in crude cardiac membranes, although restoration of a compartmentalized β2AR/AC signal cannot be excluded. Higher expression of receptors in Gαq/β2ARM mice resulted in salvage of AC activity, but hypertrophy, ventricular function, and expression of fetal genes were unaffected or worsened. With ≈1,000-fold overexpression, the majority of Gαq/β2ARH mice died with cardiomegaly at 5 weeks. Thus, although it appears that excessive, uncontrolled, or generalized augmentation of βAR signaling is deleterious in heart failure, selective enhancement by overexpressing the β2AR subtype to limited levels restores not only ventricular function but also reverses cardiac hypertrophy.
Resumo:
Most cases of autosomal-dominant familial Alzheimer's disease are linked to mutations in the presenilin genes (PS1 and PS2). In addition to modulating β-amyloid production, presenilin mutations also produce highly specific and selective alterations in intracellular calcium signaling. Although the molecular mechanisms underlying these changes are not known, one candidate molecular mediator is calsenilin, a recently identified calcium-binding protein that associates with the C terminus of both PS1 and PS2. In this study, we investigated the effects of calsenilin on calcium signaling in Xenopus oocytes expressing either wild-type or mutant PS1. In this system, mutant PS1 potentiated the amplitude of calcium signals evoked by inositol 1,4,5-trisphosphate and also accelerated their rates of decay. We report that calsenilin coexpression reverses both of these potentially pathogenic effects. Notably, expression of calsenilin alone had no discernable effects on calcium signaling, suggesting that calsenilin modulates these signals by a mechanism independent of simple calcium buffering. Our findings further suggest that the effects of presenilin mutations on calcium signaling are likely mediated through the C-terminal domain, a region that has also been implicated in the modulation of β-amyloid production and cell death.
Resumo:
We previously generated a transgenic mouse model for acute promyelocytic leukemia (APL) by expressing the promyelocytic leukemia (PML)–retinoic acid receptor (RARα) cDNA in early myeloid cells. This fusion protein causes a myeloproliferative disease in 100% of animals, but only 15–20% of the animals develop acute leukemia after a long latency period (6–13 months). PML-RARα is therefore necessary, but not sufficient, for APL development. The coexpression of a reciprocal form of the fusion, RARα-PML, increased the likelihood of APL development (55–60%), but did not shorten latency. Together, these results suggested that additional genetic events are required for the development of APL. We therefore evaluated the splenic tumor cells from 18 transgenic mice with APL for evidence of secondary genetic events, by using spectral karyotyping analysis. Interstitial or terminal deletions of the distal region of one copy of chromosome 2 [del(2)] were found in 1/5 tumors expressing PML-RARα, but in 11/13 tumors expressing both PML-RARα and RARα-PML (P < 0.05). Leukemic cells that contained a deletion on chromosome 2 often contained additional chromosomal gains (especially of 15), chromosomal losses (especially of 11 or X/Y), or were tetraploid (P ≤ 0.001). These changes did not commonly occur in nontransgenic littermates, nor in aged transgenic mice that did not develop APL. These results suggest that expression of RARα-PML increases the likelihood of chromosome 2 deletions in APL cells. Deletion 2 appears to predispose APL cells to further chromosomal instability, which may lead to the acquisition of additional changes that provide an advantage to the transformed cells.
Resumo:
The ATP-dependent Lon protease of Saccharomyces cerevisiae mitochondria is required for selective proteolysis in the matrix, maintenance of mitochondrial DNA, and respiration-dependent growth. Lon may also possess a chaperone-like function that facilitates protein degradation and protein-complex assembly. To understand the influence of Lon’s ATPase and protease activities on these functions, we examined several Lon mutants for their ability to complement defects of Lon-deleted yeast cells. We also developed a rapid procedure for purifying yeast Lon to homogeneity to study the enzyme’s activities and oligomeric state. A point mutation in either the ATPase or the protease site strongly inhibited the corresponding activity of the pure protein but did not alter the protein’s oligomerization; when expressed at normal low levels neither of these mutant enzymes supported respiration-dependent growth of Lon-deleted cells. When the ATPase- or the protease-containing regions of Lon were expressed as separate truncated proteins, neither could support respiration-dependent growth of Lon-deleted cells; however, coexpression of these two separated regions sustained wild-type growth. These results suggest that yeast Lon contains two catalytic domains that can interact with one another even as separate proteins, and that both are essential for the different functions of Lon.
Resumo:
The deg-3 gene from the nematode Caenorhabditis elegans encodes an α subunit of a nicotinic acetylcholine receptor that was first identified by a dominant allele, u662, which produced neuronal degeneration. Because deg-3 cDNAs contain the SL2 trans-spliced leader, we suggested that deg-3 was transcribed as part of a C. elegans operon. Here we show that des-2, a gene in which mutations suppress deg-3(u662), is the upstream gene in that operon. The des-2 gene also encodes an α subunit of a nicotinic acetylcholine receptor. As expected for genes whose mRNAs are formed from a single transcript, both genes have similar expression patterns. This coexpression is functionally important because (i) des-2 is needed for the deg-3(u662) degenerations in vivo; (ii) an acetylcholine-gated channel is formed in Xenopus oocytes when both subunits are expressed but not when either is expressed alone; and (iii) channel activity, albeit apparently altered from that of the wild-type channel, results from the expression of a u662-type mutant subunit but, again, only when the wild-type DES-2 subunit is present. Thus, the operon structure appears to regulate the coordinate expression of two channel subunits.
Resumo:
We have investigated the ability of Sf-caspase-1 and two mammalian caspases, caspase-1 and caspase-3, to induce apoptosis in Spodoptera frugiperda Sf-21 insect cells. While the transient expression of the pro-Sf-caspase-1 did not induce apoptosis, expression of the pro-domain deleted form, p31, or coexpression of the two subunits of mature Sf-caspase-1, p19 and p12, induced apoptosis in Sf-21 cells. The behavior of Sf-caspase-1 resembled that of the closely related mammalian caspase, caspase-3, and contrasted with that of the mammalian caspase-1, the pro-form of which was active in inducing apoptosis in Sf-21 cells. The baculovirus caspase inhibitor P35 blocked apoptosis induced by active forms of all three caspases. In contrast, members of the baculovirus inhibitor of apoptosis (IAP) family failed to block active caspase-induced apoptosis. However, during viral infection, expression of OpIAP or CpIAP blocked the activation of pro-Sf-caspase-1 and the associated induction of apoptosis. Thus, the mechanism by which baculovirus IAPs inhibit apoptosis is distinct from the mechanism by which P35 blocks apoptosis and involves inhibition of the activation of pro-caspases like Sf-caspase-1.
Resumo:
Human epithelial kidney cells (HEK) were prepared to coexpress α1A, α2δ with different β calcium channel subunits and green fluorescence protein. To compare the calcium currents observed in these cells with the native neuronal currents, electrophysiological and pharmacological tools were used conjointly. Whole-cell current recordings of human epithelial kidney α1A-transfected cells showed small inactivating currents in 80 mM Ba2+ that were relatively insensitive to calcium blockers. Coexpression of α1A, βIb, and α2δ produced a robust inactivating current detected in 10 mM Ba2+, reversibly blockable with low concentration of ω-agatoxin IVA (ω-Aga IVA) or synthetic funnel-web spider toxin (sFTX). Barium currents were also supported by α1A, β2a, α2δ subunits, which demonstrated the slowest inactivation and were relatively insensitive to ω-Aga IVA and sFTX. Coexpression of β3 with the same combination as above produced inactivating currents also insensitive to low concentration of ω-Aga IVA and sFTX. These data indicate that the combination α1A, βIb, α2δ best resembles P-type channels given the rate of inactivation and the high sensitivity to ω-Aga IVA and sFTX. More importantly, the specificity of the channel blocker is highly influenced by the β subunit associated with the α1A subunit.
Resumo:
The halobacterial phototaxis receptors sensory rhodopsin I and II (SRI, SRII) enable the bacteria to seek optimal light conditions for ion pumping by bacteriorhodopsin and/or halorhodopsin. The incoming signal is transferred across the plasma membrane by means of receptor-specific transducer proteins that bind tightly to their corresponding photoreceptors. To investigate the receptor/transducer interaction, advantage is taken of the observation that both SRI and SRII can function as proton pumps. SRI from Halobacterium salinarum, which triggers the positive phototaxis, the photophobic receptor SRII from Natronobacterium pharaonis (pSRII), as well as the mutant pSRII-F86D were expressed in Xenopus oocytes. Voltage-clamp studies confirm that SRI and pSRII function as light-driven, outwardly directed proton pumps with a much stronger voltage dependence than the ion pumps bacteriorhodopsin and halorhodopsin. Coexpression of SRI and pSRII-F86D with their corresponding transducers suppresses the proton transport, revealing a tight binding and specific interaction of the two proteins. These latter results may be exploited to further analyze the binding interaction of the photoreceptors with their downstream effectors.