93 resultados para Biological soil crusts formation
Resumo:
The UV light-induced synthesis of UV-protective flavonoids diverts substantial amounts of substrates from primary metabolism into secondary product formation and thus causes major perturbations of the cellular homeostasis. Results from this study show that the mRNAs encoding representative enzymes from various supply pathways are coinduced in UV-irradiated parsley cells (Petroselinum crispum) with two mRNAs of flavonoid glycoside biosynthesis, encoding phenylalanine ammonia-lyase and chalcone synthase. Strong induction was observed for mRNAs encoding glucose 6-phosphate dehydrogenase (carbohydrate metabolism, providing substrates for the shikimate pathway), 3-deoxyarabinoheptulosonate 7-phosphate synthase (shikimate pathway, yielding phenylalanine), and acyl-CoA oxidase (fatty acid degradation, yielding acetyl-CoA), and moderate induction for an mRNA encoding S-adenosyl-homocysteine hydrolase (activated methyl cycle, yielding S-adenosyl-methionine for B-ring methylation). Ten arbitrarily selected mRNAs representing various unrelated metabolic activities remained unaffected. Comparative analysis of acyl-CoA oxidase and chalcone synthase with respect to mRNA expression modes and gene promoter structure and function revealed close similarities. These results indicate a fine-tuned regulatory network integrating those functionally related pathways of primary and secondary metabolism that are specifically required for protective adaptation to UV irradiation. Although the response of parsley cells to UV light is considerably broader than previously assumed, it contrasts greatly with the extensive metabolic reprogramming observed previously in elicitor-treated or fungus-infected cells.
Resumo:
New antibiotics to combat the emerging pandemic of drug-resistant strains of Mycobacterium tuberculosis are urgently needed. We have investigated the effects on M. tuberculosis of phosphorothioate-modified antisense oligodeoxyribonucleotides (PS-ODNs) against the mRNA of glutamine synthetase, an enzyme whose export is associated with pathogenicity and with the formation of a poly-l-glutamate/glutamine cell wall structure. Treatment of virulent M. tuberculosis with 10 μM antisense PS-ODNs reduced glutamine synthetase activity and expression by 25–50% depending on whether one, two, or three different PS-ODNs were used and the PS-ODNs' specific target sites on the mRNA. Treatment with PS-ODNs of a recombinant strain of Mycobacterium smegmatis expressing M. tuberculosis glutamine synthetase selectively inhibited the recombinant enzyme but not the endogenous enzyme for which the mRNA transcript was mismatched by 2–4 nt. Treatment of M. tuberculosis with the antisense PS-ODNs also reduced the amount of poly-l-glutamate/glutamine in the cell wall by 24%. Finally, treatment with antisense PS-ODNs reduced M. tuberculosis growth by 0.7 logs (1 PS-ODN) to 1.25 logs (3 PS-ODNs) but had no effect on the growth of M. smegmatis, which does not export glutamine synthetase nor possess the poly-l-glutamate/glutamine (P-l-glx) cell wall structure. The experiments indicate that the antisense PS-ODNs enter the cytoplasm of M. tuberculosis and bind to their cognate targets. Although more potent ODN technology is needed, this study demonstrates the feasibility of using antisense ODNs in the antibiotic armamentarium against M. tuberculosis.
Resumo:
Coagulation in crayfish blood is based on the transglutaminase-mediated crosslinking of a specific plasma clotting protein. Here we report the cloning of the subunit of this clotting protein from a crayfish hepatopancreas cDNA library. The ORF encodes a protein of 1,721 amino acids, including a signal peptide of 15 amino acids. Sequence analysis reveals that the clotting protein is homologous to vitellogenins, which are proteins found in vitellogenic females of egg-laying animals. The clotting protein and vitellogenins are all lipoproteins and share a limited sequence similarity to certain other lipoproteins (e.g., mammalian apolipoprotein B and microsomal triglyceride transfer protein) and contain a stretch with similarity to the D domain of mammalian von Willebrand factor. The crayfish clotting protein is present in both sexes, unlike the female-specific vitellogenins. Electron microscopy was used to visualize individual clotting protein molecules and to study the transglutaminase-mediated clotting reaction. In the presence of an endogenous transglutaminase, the purified clotting protein molecules rapidly assemble into long, flexible chains that occasionally branch.
Resumo:
Epidemiological studies suggest that there is a beneficial effect of moderate ethanol consumption on the incidence of cardiovascular disease. Ethanol is metabolized to acetaldehyde, a two-carbon carbonyl compound that can react with nucleophiles to form covalent addition products. We have identified a biochemical modification produced by the reaction of acetaldehyde with protein-bound Amadori products. Amadori products typically arise from the nonenzymatic addition of reducing sugars (such as glucose) to protein amino groups and are the precursors to irreversibly bound, crosslinking moieties called advanced glycation endproducts, or AGEs. AGEs accumulate over time on plasma lipoproteins and vascular wall components and play an important role in the development of diabetes- and age-related cardiovascular disease. The attachment of acetaldehyde to a model Amadori product produces a chemically stabilized complex that cannot rearrange and progress to AGE formation. We tested the role of this reaction in preventing AGE formation in vivo by administering ethanol to diabetic rats, which normally exhibit increased AGE formation and high circulating levels of the hemoglobin Amadori product, HbA1c, and the hemoglobin AGE product, Hb-AGE. In this model study, diabetic rats fed an ethanol diet for 4 weeks showed a 52% decrease in Hb-AGE when compared with diabetic controls (P < 0.001). Circulating levels of HbA1c were unaffected by ethanol, pointing to the specificity of the acetaldehyde reaction for the post-Amadori, advanced glycation process. These data suggest a possible mechanism for the so-called “French paradox,” (the cardioprotection conferred by moderate ethanol ingestion) and may offer new strategies for inhibiting advanced glycation.
Resumo:
Regulation of β-catenin stability is essential for Wnt signal transduction during development and tumorigenesis. It is well known that serine-phosphorylation of β-catenin by the Axin–glycogen synthase kinase (GSK)–3β complex targets β-catenin for ubiquitination–degradation, and mutations at critical phosphoserine residues stabilize β-catenin and cause human cancers. How β-catenin phosphorylation results in its degradation is undefined. Here we show that phosphorylated β-catenin is specifically recognized by β-Trcp, an F-box/WD40-repeat protein that also associates with Skp1, an essential component of the ubiquitination apparatus. β-catenin harboring mutations at the critical phosphoserine residues escapes recognition by β-Trcp, thus providing a molecular explanation for why these mutations cause β-catenin accumulation that leads to cancer. Inhibition of endogenous β-Trcp function by a dominant negative mutant stabilizes β-catenin, activates Wnt/β-catenin signaling, and induces axis formation in Xenopus embryos. Therefore, β-Trcp plays a central role in recruiting phosphorylated β-catenin for degradation and in dorsoventral patterning of the Xenopus embryo.
Resumo:
Connexin (Cx) 43 and Cx40 are coexpressed in several tissues, including cardiac atrial and ventricular myocytes and vascular smooth muscle. It has been shown that these Cxs form homomeric/homotypic channels with distinct permeability and gating properties but do not form functional homomeric/heterotypic channels. If these Cxs were to form heteromeric channels, they could display functional properties not well predicted by the homomeric forms. We assessed this possibility by using A7r5 cells, an embryonic rat aortic smooth muscle cell line that coexpresses Cxs 43 and 40. Connexons (hemichannels), which were isolated from these cells by density centrifugation and immunoprecipitated with antibody against Cx43, contained Cx40. Similarly, antibody against Cx40 coimmunoprecipitated Cx43 from the same connexon fraction but only Cx40 from Cx (monomer) fractions. These results indicate that heteromeric connexons are formed by these Cxs in the A7r5 cells. The gap junction channels formed in the A7r5 cells display many unitary conductances distinct from homomeric/homotypic Cx43 or Cx40 channels. Voltage-dependent gating parameters in the A7r5 cells are also quite variable compared with cells that express only Cx40 or Cx43. These data indicate that Cxs 43 and 40 form functional heteromeric channels with unique gating and conductance properties.
Resumo:
The active-site cysteines of DsbA, the periplasmic disulfide-bond-forming enzyme of Escherichia coli, are kept oxidized by the cytoplasmic membrane protein DsbB. DsbB, in turn, is oxidized by two kinds of quinones (ubiquinone for aerobic and menaquinone for anaerobic growth) in the electron-transport chain. We describe the isolation of dsbB missense mutations that change a highly conserved arginine residue at position 48 to histidine or cysteine. In these mutants, DsbB functions reasonably well aerobically but poorly anaerobically. Consistent with this conditional phenotype, purified R48H exhibits very low activity with menaquinone and an apparent Michaelis constant (Km) for ubiquinone seven times greater than that of the wild-type DsbB, while keeping an apparent Km for DsbA similar to that of wild-type enzyme. From these results, we propose that this highly conserved arginine residue of DsbB plays an important role in the catalysis of disulfide bond formation through its role in the interaction of DsbB with quinones.
Resumo:
The prgHIJK operon encodes components of the Salmonella typhimurium pathogenicity island 1 type III secretion system (TTSS). Previously, prgH and prgK were shown to be required for formation of the supramolecular type III secretion needle complex (NC) [Kubori, T., et al. (1998) Science 280, 602–605]. This work indicates that all prg operon genes are required for NC formation. PrgH multimerizes into a distinct tetrameric-shaped structure that may be an early intermediate of NC assembly and may provide the structural foundation required for PrgK oligomerization. PrgH and PrgK, in the absence of other TTSS components, oligomerize into ring-shaped structures identical in appearance and size to the base of the NC, indicating that they are likely the major inner membrane structural components required for secretion. PrgI and PrgJ cofractionate with the NC and are secreted into the culture supernatant. NC from prgI and prgJ mutants have an identical morphology to the envelope-spanning (basal body) NC components, but are missing the external needle, indicating that PrgI and PrgJ are required for full NC assembly and are likely components of the external needle. Therefore, PrgI and PrgJ are secreted through the NC basal body, composed in part of PrgH/K and InvG/H rings, to participate in assembly of the more distal components of the NC.
Resumo:
A requirement for scaffolding complexes containing internalized G protein-coupled receptors and β-arrestins in the activation and subcellular localization of extracellular signal-regulated kinases 1 and 2 (ERK1/2) has recently been proposed. However, the composition of these complexes and the importance of this requirement for function of ERK1/2 appear to differ between receptors. Here we report that substance P (SP) activation of neurokinin-1 receptor (NK1R) stimulates the formation of a scaffolding complex comprising internalized receptor, β-arrestin, src, and ERK1/2 (detected by gel filtration, immunoprecipitation, and immunofluorescence). Inhibition of complex formation, by expression of dominant-negative β-arrestin or a truncated NK1R that fails to interact with β-arrestin, inhibits both SP-stimulated endocytosis of the NK1R and activation of ERK1/2, which is required for the proliferative and antiapoptotic effects of SP. Thus, formation of a β-arrestin-containing complex facilitates the proliferative and antiapoptotic effects of SP, and these effects of SP could be diminished in cells expressing truncated NK1R corresponding to a naturally occurring variant.
Resumo:
Carotenoid pigments in plants fulfill indispensable functions in photosynthesis. Carotenoids that accumulate as secondary metabolites in chromoplasts provide distinct coloration to flowers and fruits. In this work we investigated the genetic mechanisms that regulate accumulation of carotenoids as secondary metabolites during ripening of tomato fruits. We analyzed two mutations that affect fruit pigmentation in tomato (Lycopersicon esculentum): Beta (B), a single dominant gene that increases β-carotene in the fruit, and old-gold (og), a recessive mutation that abolishes β-carotene and increases lycopene. Using a map-based cloning approach we cloned the genes B and og. Molecular analysis revealed that B encodes a novel type of lycopene β-cyclase, an enzyme that converts lycopene to β-carotene. The amino acid sequence of B is similar to capsanthin-capsorubin synthase, an enzyme that produces red xanthophylls in fruits of pepper (Capsicum annum). Our results prove that β-carotene is synthesized de novo during tomato fruit development by the B lycopene cyclase. In wild-type tomatoes B is expressed at low levels during the breaker stage of ripening, whereas in the Beta mutant its transcription is dramatically increased. Null mutations in the gene B are responsible for the phenotype in og, indicating that og is an allele of B. These results confirm that developmentally regulated transcription is the major mechanism that governs lycopene accumulation in ripening fruits. The cloned B genes can be used in various genetic manipulations toward altering pigmentation and enhancing nutritional value of plant foods.
Resumo:
The pancreatic acinar cell produces powerful digestive enzymes packaged in zymogen granules in the apical pole. Ca2+ signals elicited by acetylcholine or cholecystokinin (CCK) initiate enzyme secretion by exocytosis through the apical membrane. Intracellular enzyme activation is normally kept to a minimum, but in the often-fatal human disease acute pancreatitis, autodigestion occurs. How the enzymes become inappropriately activated is unknown. We monitored the cytosolic Ca2+ concentration ([Ca2+]i), intracellular trypsin activation, and its localization in isolated living cells with specific fluorescent probes and studied intracellular vacuole formation by electron microscopy as well as quantitative image analysis (light microscopy). A physiological CCK level (10 pM) eliciting regular Ca2+ spiking did not evoke intracellular trypsin activation or vacuole formation. However, stimulation with 10 nM CCK, evoking a sustained rise in [Ca2+]i, induced pronounced trypsin activation and extensive vacuole formation, both localized in the apical pole. Both processes were abolished by preventing abnormal [Ca2+]i elevation, either by preincubation with the specific Ca2+ chelator 1,2-bis(O-aminophenoxy)ethane-N,N-N′,N′-tetraacetic acid (BAPTA) or by removal of external Ca2+. CCK hyperstimulation evokes intracellular trypsin activation and vacuole formation in the apical granular pole. Both of these processes are mediated by an abnormal sustained rise in [Ca2+]i.
Resumo:
Caenorhabditis elegans dauer formation is an alternative larval developmental pathway that the worm can take when environmental conditions become detrimental. Animals can survive several months in this stress-resistant stage and can resume normal development when growth conditions improve. Although the worms integrate a variety of sensory information to commit to dauer formation, it is currently unknown whether they also monitor internal cellular damage. The Ro ribonucleoprotein complex, which was initially described as a human autoantigen, is composed of one major 60-kDa protein, Ro60, that binds to one of four small RNA molecules, designated Y RNAs. Ro60 has been shown to bind mutant 5S rRNA molecules in Xenopus oocytes, suggesting a role for Ro60 in 5S rRNA biogenesis. Analysis of ribosomes from a C. elegans rop-1(−) strain, which is null for the expression of Ro60, demonstrated that they contain a high percentage of mutant 5S rRNA molecules, thereby strengthening the notion of a link between the rop-1 gene product and 5S rRNA quality control. The Ro particle was recently shown to be involved in the resistance of Deinococcus radiodurans to UV irradiation, suggesting a role for the Ro complex in stress resistance. We have studied the role of rop-1 in dauer formation. We present genetic and biochemical evidence that rop-1 interacts with dauer-formation genes and is involved in the regulation of the worms' entry into the dauer stage. Furthermore, we find that the rop-1 gene product undergoes a proteolytic processing step that is regulated by the dauer formation pathway via an aspartic proteinase. These results suggest that the Ro particle may function in an RNA quality-control checkpoint for dauer formation.
Resumo:
The Arp2/3 complex is a stable assembly of seven protein subunits including two actin-related proteins (Arp2 and Arp3) and five novel proteins. Previous work showed that this complex binds to the sides of actin filaments and is concentrated at the leading edges of motile cells. Here, we show that Arp2/3 complex purified from Acanthamoeba caps the pointed ends of actin filaments with high affinity. Arp2/3 complex inhibits both monomer addition and dissociation at the pointed ends of actin filaments with apparent nanomolar affinity and increases the critical concentration for polymerization at the pointed end from 0.6 to 1.0 μM. The high affinity of Arp2/3 complex for pointed ends and its abundance in amoebae suggest that in vivo all actin filament pointed ends are capped by Arp2/3 complex. Arp2/3 complex also nucleates formation of actin filaments that elongate only from their barbed ends. From kinetic analysis, the nucleation mechanism appears to involve stabilization of polymerization intermediates (probably actin dimers). In electron micrographs of quick-frozen, deep-etched samples, we see Arp2/3 bound to sides and pointed ends of actin filaments and examples of Arp2/3 complex attaching pointed ends of filaments to sides of other filaments. In these cases, the angle of attachment is a remarkably constant 70 ± 7°. From these in vitro biochemical properties, we propose a model for how Arp2/3 complex controls the assembly of a branching network of actin filaments at the leading edge of motile cells.
Resumo:
Dexamethasone and progesterone have been found to accelerate the time of initiation and enhance the rate of myelin synthesis in Schwann cell/neuronal cocultures. The expression of mRNA for cytochrome P450scc (converts cholesterol to pregnenolone), 3β-hydroxysteroid dehydrogenase (converts pregnenolone to progesterone), and the progesterone receptor were detected and markedly induced during peak myelin formation in the cocultures. The mRNA for the glucocorticoid receptor was detected, but was found to be constituitively expressed. In addition, the specific activity of 3β-hydroxysteroid dehydrogenase was measured and found to increase by 10-fold. The mRNA for cytochrome P450scc and 3β-hydroxysteroid dehydrogenase also were found to be induced during the differentiation of O-2A precursor cells to oligodendrocytes. Fibroblast growth factor and platelet-derived growth factor were found to have proliferative effects on Schwann cells, but they had no effect on the initiation or the rate of myelin formation. These results demonstrate that myelin-forming cells have inducible enzymes responsible for steroid biosynthesis and suggest a critical role for endogenous steroid hormones in signaling the initiation and enhancing the rate of myelin formation.
Formation of the preprimosome protects λ O from RNA transcription-dependent proteolysis by ClpP/ClpX
Resumo:
Using the bacteriophage λ DNA replication system, composed entirely of purified proteins, we have tested the accessibility of the short-lived λ O protein to the ClpP/ClpX protease during the various stages of λ DNA replication. We find that binding of λ O protein to its oriλ DNA sequence, leading to the so-called “O-some” formation, largely inhibits its degradation. On the contrary, under conditions permissive for transcription, the λ O protein bound to the oriλ sequence becomes largely accessible to ClpP/ClpX-mediated proteolysis. However, when the λ O protein is part of the larger oriλ:O⋅P⋅DnaB preprimosomal complex, transcription does not significantly increase ClpP/ClpX-dependent λ O degradation. These results show that transcription can stimulate proteolysis of a protein that is required for the initiation of DNA replication.