60 resultados para Aspartic Proteinases
Resumo:
Certain matrix metalloproteinases (MMP) are expressed within the fibrous areas surrounding acellular lipid cores of atherosclerotic plaques, suggesting that these proteinases degrade matrix proteins within these areas and weaken the structural integrity of the lesion. We report that matrilysin and macrophage metalloelastase, two broad-acting MMPs, were expressed in human atherosclerotic lesions in carotid endarterectomy samples (n = 18) but were not expressed in normal arteries (n = 7). In situ hybridization and immunohistochemistry revealed prominent expression of matrilysin in cells confined to the border between acellular lipid cores and overlying fibrous areas, a distribution distinct from other MMPs found in similar lesions. Metalloelastase was expressed in these same border areas. Matrilysin was present in lipid-laden macrophages, identified by staining with anti-CD-68 antibody. Furthermore, endarterectomy tissue in organ culture released matrilysin. Staining for versican demonstrated that this vascular proteoglycan was present at sites of matrilysin expression. Biochemical studies showed that matrilysin degraded versican much more efficiently than other MMPs present in atherosclerotic lesions. Our findings suggest that matrilysin, specifically expressed in atherosclerotic lesions, could cleave structural proteoglycans and other matrix components, potentially leading to separation of caps and shoulders from lipid cores.
Resumo:
Although proteases related to the interleukin 1 beta-converting enzyme (ICE) are known to be essential for apoptotic execution, the number of enzymes involved, their substrate specificities, and their specific roles in the characteristic biochemical and morphological changes of apoptosis are currently unknown. These questions were addressed using cloned recombinant ICE-related proteases (IRPs) and a cell-free model system for apoptosis (S/M extracts). First, we compared the substrate specificities of two recombinant human IRPs, CPP32 and Mch2 alpha. Both enzymes cleaved poly-(ADP-ribose) polymerase, albeit with different efficiencies. Mch2 alpha also cleaved recombinant and nuclear lamin A at a conserved VEID decreases NG sequence located in the middle of the coiled-coil rod domain, producing a fragment that was indistinguishable from the lamin A fragment observed in S/M extracts and in apoptotic cells. In contrast, CPP32 did not cleave lamin A. The cleavage of lamin A by Mch2 alpha and by S/M extracts was inhibited by millimolar concentrations of Zn2+, which had a minimal effect on cleavage of poly (ADP-ribose) polymerase by CPP32 and by S/M extracts. We also found that N-(acetyltyrosinylvalinyl-N epsilon-biotinyllysyl)aspartic acid [(2,6-dimethylbenzoyl)oxy]methyl ketone, which derivatizes the larger subunit of active ICE, can affinity label up to five active IRPs in S/M extracts. Together, these observations indicate that the processing of nuclear proteins in apoptosis involves multiple IRPs having distinct preferences for their apoptosis-associated substrates.
Resumo:
Macrophages secrete a variety of proteinases that are thought to participate in remodeling of the extracellular matrix associated with inflammatory processes. We have eliminated expression of the macrophage metalloelastase (MME) gene by targeted disruption to assess the role of this protein in macrophage-mediated proteolysis. We found that the macrophages of MME-deficient (MME-/-) mice have a markedly diminished capacity to degrade extracellular matrix components. In addition, MME-/- macrophages are essentially unable to penetrate reconstituted basement membranes in vitro and in vivo. MME is therefore required for macrophage-mediated extracellular matrix proteolysis and tissue invasion.
Resumo:
Bcl2 overexpression prevents axotomy-induced neuronal death of neonatal facial motoneurons, as defined by morphological criteria. However, the functional properties of these surviving lesioned transgenic neurons are unknown. Using transgenic mice overexpressing the protein Bcl2, we have investigated the bioelectrical properties of transgenic facial motoneurons from 7 to 20 days after neonatal unilateral axotomy using brain-stem slices and whole cell patch-clamp recording. Nonaxotomized facial motoneurons from wild-type and transgenic mice had similar properties; they had an input resistance of 38 +/- 6 M omega and fired repetitively after injection of positive current pulses. When cells were voltage-clamped at or near their resting membrane potential, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-D-aspartic acid (NMDA), or vasopressin generated sustained inward currents. In transgenic axotomized mice, facial motoneurons could be found located ipsilaterally to the lesion; they had an input resistance of 150 +/- 30 M omega, indicating that they were smaller in size, fired repetitively, and were also responsive to AMPA, NMDA, and vasopressin. Morphological measurements achieved 1 week after the lesion have shown that application of brain-derived neurotrophic factor prevented the reduction in size of axotomized transgenic motoneurons. These data indicate that Bcl2 not only prevents morphological apoptotic death of axotomized neonatal transgenic motoneurons but also permits motoneurons to conserve functional electrophysiological properties.
Resumo:
We have previously described the mutator alleles mutA and mutC, which map at 95 minutes and 42 minutes, respectively, on the Escherichia coli genetic map and which stimulate transversions; the A.T-->T.A and G.C-->T.A substitutions are the most prominent. In this study we show that both mutA and mutC result from changes in the anticodon in one of four copies of the same glycine tRNA, at either the glyV or the glyW locus. This change results in a tRNA that inserts glycine at aspartic acid codons. In view of previous studies of missense suppressor tRNAs, the mistranslation of aspartic acid codons is assumed to occur at approximately 1-2%. We postulate that the mutator tRNA effect is exerted by generating a mutator polymerase and suggest that the epsilon subunit of DNA polymerase, which provides a proofreading function, is the most likely target. The implications of these findings for the contribution of mistranslation to observed spontaneous mutation rates in wild-type strains, as well as other cellular phenomena such as aging, are discussed.
Resumo:
Engineering site-specific amino acid substitutions into the protein-tyrosine phosphatase (PTPase) PTP1 and the dual-specific vaccinia H1-related phosphatase (VHR), has kinetically isolated the two chemical steps of the reaction and provided a rare opportunity for examining transition states and directly observing the phosphoenzyme intermediate. Changing serine to alanine in the active-site sequence motif HCXXGXXRS shifted the rate-limiting step from intermediate formation to intermediate hydrolysis. Using phosphorus 31P NMR, the covalent thiol-phosphate intermediate was directly observed during catalytic turnover. The importance of the conserved aspartic acid (D92 in VHR and D181 in PTP1) in both chemical steps was established. Kinetic analysis of D92N and D181N mutants indicated that aspartic acid acts as a general acid by protonating the leaving-group phenolic oxygen. Structure-reactivity experiments with native and aspartate mutant enzymes established that proton transfer is concomitant with P-O cleavage, such that no charge develops on the phenolic oxygen. Steady- and presteady-state kinetics, as well as NMR analysis of the double mutant D92N/S131A (VHR), suggested that the conserved aspartic acid functions as a general base during intermediate hydrolysis. As a general base, aspartate would activate a water molecule to facilitate nucleophilic attack. The amino acids involved in transition-state stabilization for cysteinylphosphate hydrolysis were confirmed by the x-ray structure of the Yersinia PTPase complexed with vanadate, a transition-state mimic that binds covalently to the active-site cysteine. Consistent with the NMR, x-ray, biochemical, and kinetic data, a unifying mechanism for catalysis is proposed.
Resumo:
Genes that are up- and down-regulated by thyroid hormone in the tail resorption program of Xenopus laevis have been isolated by a gene expression screen, sequenced, and identified in the GenBank data base. The entire program is estimated to consist of fewer than 35 up-regulated and fewer than 10 down-regulated genes; 17 and 4 of them, respectively, have been isolated and characterized. Up-regulated genes whose function can be predicted on the basis of their sequence include four transcription factors (including one of the thyroid hormone receptors), an extracellular matrix component (fibronectin) and membrane receptor (integrin), four proteinases, a deiodinase that degrades thyroid hormone, and a protein that binds the hypothalamic corticotropin-releasing factor, which has been implicated in controlling thyroid hormone synthesis in Xenopus tadpoles. All four down-regulated genes encode extracellular proteins that are expressed in tadpole epidermis. This survey of the program provides insights into the biology of metamorphosis.
Resumo:
Although most nuclear hormone receptors are ligand-dependent transcriptional activators, certain members of this superfamily, such as thyroid hormone receptor (TR) and retinoic acid receptor (RAR), are involved in transcriptional repression. The silencing function of these receptors has been localized to the ligand binding domain (LBD). Previously, we demonstrated that overexpression of either the entire LBD or only the N-terminal region of the LBD (amino acids 168-259) is able to inhibit the silencing activity of TR. From this result we postulated the existence of a limiting factor (corepressor) that is necessary for TR silencing activity. To support this hypothesis, we identified amino acids in the N-terminal region of the LBD of TR that are important for the corepressor interaction and for the silencing function of TR. The silencing activity of TR was unaffected by overexpression of the LBD of mutant TR (V174A/D177A), suggesting that valine at position 174 and/or aspartic acid at position 177 are important for corepressor interaction. This mutant receptor protein, V174/D177, also lost the ability to silence target genes, suggesting that these amino acids are important for silencing function. Control experiments indicate that this mutant TR maintains its wild-type hormone binding and transactivation functions. These findings further strengthen the idea that the N-terminal region of the LBD of TR interacts with a putative corepressor protein(s) to achieve silencing of basal gene transcription.
Resumo:
Hereditary deficiency of factor IXa (fIXa), a key enzyme in blood coagulation, causes hemophilia B, a severe X chromosome-linked bleeding disorder afflicting 1 in 30,000 males; clinical studies have identified nearly 500 deleterious variants. The x-ray structure of porcine fIXa described here shows the atomic origins of the disease, while the spatial distribution of mutation sites suggests a structural model for factor X activation by phospholipid-bound fIXa and cofactor VIIIa. The 3.0-A-resolution diffraction data clearly show the structures of the serine proteinase module and the two preceding epidermal growth factor (EGF)-like modules; the N-terminal Gla module is partially disordered. The catalytic module, with covalent inhibitor D-Phe-1I-Pro-2I-Arg-3I chloromethyl ketone, most closely resembles fXa but differs significantly at several positions. Particularly noteworthy is the strained conformation of Glu-388, a residue strictly conserved in known fIXa sequences but conserved as Gly among other trypsin-like serine proteinases. Flexibility apparent in electron density together with modeling studies suggests that this may cause incomplete active site formation, even after zymogen, and hence the low catalytic activity of fIXa. The principal axes of the oblong EGF-like domains define an angle of 110 degrees, stabilized by a strictly conserved and fIX-specific interdomain salt bridge. The disorder of the Gla module, whose hydrophobic helix is apparent in electron density, can be attributed to the absence of calcium in the crystals; we have modeled the Gla module in its calcium form by using prothrombin fragment 1. The arched module arrangement agrees with fluorescence energy transfer experiments. Most hemophilic mutation sites of surface fIX residues occur on the concave surface of the bent molecule and suggest a plausible model for the membrane-bound ternary fIXa-FVIIIa-fX complex structure: fIXa and an equivalently arranged fX arch across an underlying fVIIIa subdomain from opposite sides; the stabilizing fVIIIa interactions force the catalytic modules together, completing fIXa active site formation and catalytic enhancement.
Resumo:
Although specific proteinases play a critical role in the active phase of apoptosis, their substrates are largely unknown. We previously identified poly(ADP-ribose) polymerase (PARP) as an apoptosis-associated substrate for proteinase(s) related to interleukin 1 beta-converting enzyme (ICE). Now we have used a cell-free system to characterize proteinase(s) that cleave the nuclear lamins during apoptosis. Lamin cleavage during apoptosis requires the action of a second ICE-like enyzme, which exhibits kinetics of cleavage and a profile of sensitivity to specific inhibitors that is distinct from the PARP proteinase. Thus, multiple ICE-like enzymes are required for apoptotic events in these cell-free extracts. Inhibition of the lamin proteinase with tosyllysine "chloromethyl ketone" blocks nuclear apoptosis prior to the packaging of condensed chromatin into apoptotic bodies. Under these conditions, the nuclear DNA is fully cleaved to a nucleosomal ladder. Our studies reveal that the lamin proteinase and the fragmentation nuclease function in independent parallel pathways during the final stages of apoptotic execution. Neither pathway alone is sufficient for completion of nuclear apoptosis. Instead, the various activities cooperate to drive the disassembly of the nucleus.
A transgene coding for a human insulin analog has a mitogenic effect on murine embryonic beta cells.
Resumo:
We have investigated the mitogenic effect of three mutant forms of human insulin on insulin-producing beta cells of the developing pancreas. We examined transgenic embryonic and adult mice expressing (i) human [AspB10]-proinsulin/insulin ([AspB10]ProIN/IN), produced by replacement of histidine by aspartic acid at position 10 of the B chain and characterized by an increased affinity for the insulin receptor; (ii) human [LeuA3]insulin, produced by the substitution of leucine for valine in position 3 of the A chain, which exhibits decreased receptor binding affinity; and (iii) human [LeuA3, AspB10]insulin "double" mutation. During development, beta cells of AspB10 embryos were twice as abundant and had a 3 times higher rate of proliferation compared with beta cells of littermate controls. The mitogenic effect of [AspB10]ProIN/IN was specific for embryonic beta cells because the rate of proliferation of beta cells of adults and of glucagon (alpha) cells and adrenal chromaffin cells of embryos was similar in AspB10 mice and controls. In contrast to AspB10 embryos, the number of beta cells in the LeuA3 and "double" mutant lines was similar to the number in controls. These findings indicate that the [AspB10]ProIN/IN analog increased the rate of fetal beta-cell proliferation. The mechanism or mechanisms that mediate this mitogenic effect remain to be determined.
Resumo:
It was previously proposed that the activation of rat liver phenylalanine hydroxylase (EC 1.14.16.1) by cAMP-dependent protein kinase-mediated phosphorylation of Ser-16 is due to the introduction of the negatively charged phosphate group. To explore the validity of this proposal, we have applied site-directed mutagenesis to specifically replace Ser-16 with negatively charged amino acids, glutamic and aspartic; with polar uncharged amino acids, asparagine and glutamine; with the positively charged amino acid lysine; and with the nonpolar hydrophobic amino acid alanine. The wild-type and mutant enzymes were purified to homogeneity, and the importance of Ser-16 in the activation of phenylalanine hydroxylase was examined by comparing the state of activation of the phosphorylated form of the wild-type hydroxylase with that of the mutants. The kinetic studies carried out on the wild-type phosphorylated hydroxylase showed that all the activation could be accounted for by an increase in Vmax with no change in Km for either phenylalanine or the pterin cofactor. Replacement of Ser-16 with a negatively charged residue, glutamate of aspartate, resulted in the activation of the hydroxylase by 2- to 4-fold, whereas replacement with glutamine, asparagine, lysine, or alanine resulted in a much more modest increase. Further, lysolecithin was found to stimulate the phosphorylated hydroxylase and the mutant enzymes S16E and S16D by a factor of 6-7. In contrast, the mutants S16Q, S16N, and S16A all showed the same magnitude of activation as the wild-type with lysolecithin. Therefore, this study demonstrates that activation of the enzyme by phosphorylation of Ser-16 by cAMP-dependent protein kinase is due to the introduction of negative charge(s) and strongly suggests the involvement of electrostatic interaction between the regulatory and catalytic domains of the hydroxylase.
Resumo:
We have explored the feasibility of using a "double-tagging" assay for assessing which amino acids of a protein are responsible for its binding to another protein. We have chosen the adenovirus E1A-retinoblastoma gene product (pRB) proteins for a model system, and we focused on the high-affinity conserved region 2 of adenovirus E1A (CR2). We used site-specific mutagenesis to generate a mutant E1A gene with a lysine instead of an aspartic acid at position 121 within the CR2 site. We demonstrated that this mutant exhibited little binding to pRB by the double-tagging assay. We also have shown that this lack of binding is not due to any significant decrease in the level of expression of the beta-galactosidase-E1A fusion protein. We then created a "library" of phage expressing beta-galactosidase-E1A fusion proteins with a variety of different mutations within CR2. This library of E1A mutations was used in a double-tagging screening to identify mutant clones that bound to pRB. Three classes of phage were identified: the vast majority of clones were negative and exhibited no binding to pRB. Approximately 1 in 10,000 bound to pRB but not to E1A ("true positives"). A variable number of clones appeared to bind equally well to both pRB and E1A ("false positives"). The DNA sequence of 10 true positive clones yielded the following consensus sequence: DLTCXEX, where X = any amino acid. The recovery of positive clones with only one of several allowed amino acids at each position suggests that most, if not all, of the conserved residues play an important role in binding to pRB. On the other hand, the DNA sequence of the negative clones appeared random. These results are consistent with those obtained from other sources. These data suggest that a double-tagging assay can be employed for determining which amino acids of a protein are important for specifying its interaction with another protein if the complex forms within bacteria. This assay is rapid and up to 1 x 10(6) mutations can be screened at one time.
Resumo:
vpr is one of the auxiliary genes of human immunodeficiency virus type 1 (HIV-1) and is conserved in the related HIV-2/simian immunodeficiency virus lentiviruses. The unique feature of Vpr is that it is the only nonstructural protein incorporated into the virus particle. Secondary structural analysis predicted an amphipathic alpha-helical domain in the amino terminus of Vpr (residues 17-34) which contains five acidic and four leucine residues. To evaluate the role of specific residues of the helical domain for virion incorporation, mutagenesis of this domain was carried out. Substitution of proline for any of the individual acidic residues (Asp-17 and Glu-21, -24, -25, and -29) eliminated the virion incorporation of Vpr and also altered the stability of Vpr in cells. Conservative replacement of glutamic residues of the helical domain with aspartic residues resulted in Vpr characteristic of wild type both in stability and virion incorporation, as did substitution of glutamine for the acidic residues. In contrast, replacement of leucine residues of the helical domain (residues 20, 22, 23, and 26) by alanine eliminated virion incorporation function of Vpr. These data indicate that acidic and hydrophobic residues and the helical structure in this region are critical for the stability of Vpr and its efficient incorporation into virus-like particles.
Resumo:
A peroxisomal location for insulin-degrading enzyme (IDE) has been defined by confocal immunofluorescence microscopy of stably transfected CHO cells overexpressing IDE and digitonin-permeabilization studies in normal nontransfected fibroblasts. The functional significance of IDE in degrading cleaved leader peptides of peroxisomal proteins targeted by the type II motif was evaluated with a synthetic peptide corresponding to the type II leader peptide of prethiolase. The peptide effectively competed for degradation and cross-linking of the high-affinity substrate 125I-labeled insulin to IDE. Direct proteolysis of the leader peptide of prethiolase was confirmed by HPLC; degradation was inhibited by immunodepletion with an antibody to IDE. Phylogenetic analysis of proteinases related to IDE revealed sequence similarity to mitochondrial processing peptidases.