210 resultados para Arabidopsis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large quantities of DNA sequence information about plant genes are rapidly accumulating in public databases, but to progress from DNA sequence to biological function a mutant allele for each of the genes ideally should be available. Here we describe a gene trap construct that allowed us to disrupt transcribed genes with a high efficiency in Arabidopsis thaliana. In the T-DNA vector used, the expression of a bacterial reporter gene coding for neomycin phosphotransferase II (nptII) depends on the in vivo generation of a translation fusion upon the T-DNA integration into the Arabidopsis genome. Analysis of 20 selected transgenic lines showed that 12 lines are T-DNA insertion mutants. The disrupted genes analyzed encoded ribosomal proteins (three lines), aspartate tRNA synthase, DNA ligase, basic-domain leucine zipper DNA binding protein, ATP-binding cassette transporter, and five proteins of unknown function. Four tagged genes were new for Arabidopsis. The results presented here suggest that gene trapping, using nptII as a reporter gene, can be as high as 80% and opens novel perspectives for systematic gene tagging in A. thaliana.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genes for σ-like factors of bacterial-type RNA polymerase have not been characterized from any multicellular eukaryotes, although they probably play a crucial role in the expression of plastid photosynthesis genes. We have cloned three distinct cDNAs, designated SIG1, SIG2, and SIG3, for polypeptides possessing amino acid sequences for domains conserved in σ70 factors of bacterial RNA polymerases from the higher plant Arabidopsis thaliana. Each gene is present as one copy per haploid genome without any additional sequences hybridized in the genome. Transient expression assays using green fluorescent protein demonstrated that N-terminal regions of the SIG2 and SIG3 ORFs could function as transit peptides for import into chloroplasts. Transcripts for all three SIG genes were detected in leaves but not in roots, and were induced in leaves of dark-adapted plants in rapid response to light illumination. Together with results of our previous analysis of tissue-specific regulation of transcription of plastid photosynthesis genes, these results indicate that expressed levels of the genes may influence transcription by regulating RNA polymerase activity in a green tissue-specific manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potassium (K+) nutrition and salt tolerance are key factors controlling plant productivity. However, the mechanisms by which plants regulate K+ nutrition and salt tolerance are poorly understood. We report here the identification of an Arabidopsis thaliana mutant, sos3 (salt-overly-sensitive 3), which is hypersensitive to Na+ and Li+ stresses. The mutation is recessive and is in a nuclear gene that maps to chromosome V. The sos3 mutation also renders the plant unable to grow on low K+. Surprisingly, increased extracellular Ca2+ suppresses the growth defect of sos3 plants on low K+ or 50 mM NaCl. In contrast, high concentrations of external Ca2+ do not rescue the growth of the salt-hypersensitive sos1 mutant on low K+ or 50 mM NaCl. Under NaCl stress, sos3 seedlings accumulated more Na+ and less K+ than the wild type. Increased external Ca2+ improved K+/Na+ selectivity of both sos3 and wild-type plants. However, this Ca2+ effect in sos3 is more than twice as much as that in the wild type. In addition to defining the first plant mutant with an altered calcium response, these results demonstrate that the SOS3 locus is essential for K+ nutrition, K+/Na+ selectivity, and salt tolerance in higher plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcription of CAB genes, encoding the chlorophyll a/b-binding proteins, is rapidly induced in dark-grown Arabidopsis seedlings following a light pulse. The transient induction is followed by several cycles of a circadian rhythm. Seedlings transferred to continuous light are known to exhibit a robust circadian rhythm of CAB expression. The precise waveform of CAB expression in lightâdark cycles, however, reflects a regulatory network that integrates information from photoreceptors, from the circadian clock and possibly from a developmental program. We have used the luciferase reporter system to investigate CAB expression with high time resolution. We demonstrate that CAB expression in light-grown plants exhibits a transient induction following light onset, similar to the response in dark-grown seedlings. The circadian rhythm modulates the magnitude and the kinetics of the response to light, such that the CAB promoter is not light responsive during the subjective night. A signaling pathway from the circadian oscillator must therefore antagonize the phototransduction pathways controlling the CAB promoter. We have further demonstrated that the phase of maximal CAB expression is delayed in lightâdark cycles with long photoperiods, due to the entrainment of the circadian oscillator. Under short photoperiods, this pattern of entrainment ensures that dawn coincides with a phase of high light responsiveness, whereas under long photoperiods, the light response at dawn is reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arabidopsis thaliana disease resistance genes RPS2 and RPM1 belong to a class of plant disease resistance genes that encode proteins that contain an N-terminal tripartite nucleotide binding site (NBS) and a C- terminal tandem array of leucine-rich repeats. RPS2 and RPM1 confer resistance to strains of the bacterial phytopathogen Pseudomonas syringae carrying the avirulence genes avrRpt2 and avrB, respectively. In these gene-for-gene relationships, it has been proposed that pathogen avirulence genes generate specific ligands that are recognized by cognate receptors encoded by the corresponding plant resistance genes. To test this hypothesis, it is crucial to know the site of the potential molecular recognition. Mutational analysis of RPS2 protein and in vitro translation/translocation studies indicated that RPS2 protein is localized in the plant cytoplasm. To determine whether avirulence gene products themselves are the ligands for resistance proteins, we expressed the avrRpt2 and avrB genes directly in plant cells using a novel quantitative transient expression assay, and found that expression of avrRpt2 and avrB elicited a resistance response in plants carrying the corresponding resistance genes. This observation indicates that no bacterial factors other than the avirulence gene products are required for the specific resistance response as long as the avirulence gene products are correctly localized. We propose that molecular recognition of P. syringae in RPS2- and RPM1-specified resistance occurs inside of plant cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compatible interaction between a plant and a pathogen is the result of a complex interplay between many factors of both plant and pathogen origin. Our objective was to identify host factors involved in this interaction. These factors may include susceptibility factors required for pathogen growth, factors manipulated by the pathogen to inactivate or avoid host defenses, or negative regulators of defense responses. To this end, we identified 20 recessive Arabidopsis mutants that do not support normal growth of the powdery mildew pathogen, Erysiphe cichoracearum. Complementation analyses indicated that four loci, designated powdery mildew resistant 1â4 (pmr1â4), are defined by this collection. These mutants do not constitutively accumulate elevated levels of PR1 or PDF1.2 mRNA, indicating that resistance is not simply due to constitutive activation of the salicylic acid- or ethylene- and jasmonic acid-dependent defense pathways. Further Northern blot analyses revealed that some mutants accumulate higher levels of PR1 mRNA than wild type in response to infection by powdery mildew. To test the specificity of the resistance, the pmr mutants were challenged with other pathogens including Pseudomonas syringae, Peronospora parasitica, and Erysiphe orontii. Surprisingly, one mutant, pmr1, was susceptible to E. orontii, a very closely related powdery mildew, suggesting that a very specific resistance mechanism is operating in this case. Another mutant, pmr4, was resistant to P. parasitica, indicating that this resistance is more generalized. Thus, we have identified a novel collection of mutants affecting genes required for a compatible interaction between a plant and a biotrophic pathogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The locus RTM1 is necessary for restriction of long-distance movement of tobacco etch virus in Arabidopsis thaliana without causing a hypersensitive response or inducing systemic acquired resistance. The RTM1 gene was isolated by map-based cloning. The deduced gene product is similar to the α-chain of the Artocarpus integrifolia lectin, jacalin, and to several proteins that contain multiple repeats of a jacalin-like sequence. These proteins comprise a family with members containing modular organizations of one or more jacalin repeat units and are implicated in defense against viruses, fungi, and insects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hy1 mutants of Arabidopsis thaliana fail to make the phytochrome-chromophore phytochromobilin and therefore are deficient in a wide range of phytochrome-mediated responses. Because this defect can be rescued by feeding seedlings biliverdin IXα, it is likely that the mutations affect an enzyme that converts heme to this phytochromobilin intermediate. By a combination of positional cloning and candidate-gene isolation, we have identified the HY1 gene and found it to be related to cyanobacterial, algal, and animal heme oxygenases. Three independent alleles of hy1 contain DNA lesions within the HY1 coding region, and a genomic sequence spanning the HY1 locus complements the hy1â1 mutation. HY1 is a member of a gene family and is expressed in a variety of A. thaliana tissues. Based on its homology, we propose that HY1 encodes a higher-plant heme oxygenase, designated AtHO1, responsible for catalyzing the reaction that opens the tetrapyrrole ring of heme to generate biliverdin IXα.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plant-signaling molecules salicylic acid (SA) and jasmonic acid (JA) play an important role in induced disease resistance pathways. Cross-talk between SA- and JA-dependent pathways can result in inhibition of JA-mediated defense responses. We investigated possible antagonistic interactions between the SA-dependent systemic acquired resistance (SAR) pathway, which is induced upon pathogen infection, and the JA-dependent induced systemic resistance (ISR) pathway, which is triggered by nonpathogenic Pseudomonas rhizobacteria. In Arabidopsis thaliana, SAR and ISR are effective against a broad spectrum of pathogens, including the foliar pathogen Pseudomonas syringae pv. tomato (Pst). Simultaneous activation of SAR and ISR resulted in an additive effect on the level of induced protection against Pst. In Arabidopsis genotypes that are blocked in either SAR or ISR, this additive effect was not evident. Moreover, induction of ISR did not affect the expression of the SAR marker gene PR-1 in plants expressing SAR. Together, these observations demonstrate that the SAR and the ISR pathway are compatible and that there is no significant cross-talk between these pathways. SAR and ISR both require the key regulatory protein NPR1. Plants expressing both types of induced resistance did not show elevated Npr1 transcript levels, indicating that the constitutive level of NPR1 is sufficient to facilitate simultaneous expression of SAR and ISR. These results suggest that the enhanced level of protection is established through parallel activation of complementary, NPR1-dependent defense responses that are both active against Pst. Therefore, combining SAR and ISR provides an attractive tool for the improvement of disease control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jasmonic acid (JA) and its precursor 12-oxophytodienoic acid (OPDA) act as plant growth regulators and mediate responses to environmental cues. To investigate the role of these oxylipins in anther and pollen development, we characterized a T-DNA-tagged, male-sterile mutant of Arabidopsis, opr3. The opr3 mutant plants are sterile but can be rendered fertile by exogenous JA but not by OPDA. Cloning of the mutant locus indicates that it encodes an isozyme of 12-oxophytodienoate reductase, designated OPR3. All of the defects in opr3 are alleviated by transformation of the mutant with an OPR3 cDNA. Our results indicate that JA and not OPDA is the signaling molecule that induces and coordinates the elongation of the anther filament, the opening of the stomium at anthesis, and the production of viable pollen. Just as importantly, our data demonstrate that OPR3 is the only isoform of OPR capable of reducing the correct stereoisomer of OPDA to produce JA required for male gametophyte development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The promoters of MEA (FIS1), FIS2, and FIE (FIS3), genes that repress seed development in the absence of pollination, were fused to β-glucuronidase (GUS) to study their activity pattern. The FIS2∷GUS product is found in the embryo sac, in each of the polar cell nuclei, and in the central cell nucleus. After pollination, the maternally derived FIS2∷GUS protein occurs in the nuclei of the cenocytic endosperm. Before cellularization of the endosperm, activity is terminated in the micropylar and central nuclei of the endosperm and subsequently in the nuclei of the chalazal cyst. MEA∷GUS has a pattern of activity similar to that of FIS2∷GUS, but FIE∷GUS protein is found in many tissues, including the prepollination embryo sac, and in embryo and endosperm postpollination. The similarity in mutant phenotypes; the activity of FIE, MEA, and FIS2 in the same cells in the embryo sac; and the fact that MEA and FIE proteins interact in a yeast two-hybrid system suggest that these proteins operate in the same system of control of seed development. Maternal and not paternal FIS2∷GUS, MEA∷GUS, and FIE∷GUS show activity in early endosperm, so these genes may be imprinted. When fis2, mea, and fie mutants are pollinated, seed development is arrested at the heart embryo stage. The seed arrest of mea and fis2 is avoided when they are fertilized by a low methylation parent. The wild-type alleles of MEA or FIS2 are not required. The parent-of-origin-determined differential activity of MEA, FIS2, and FIE is not dependent on DNA methylation, but methylation does control some gene(s) that have key roles in seed development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The galactolipids, mono- and digalactosyldiacylglycerol (DGDG), are the most common nonphosphorous lipids in the biosphere and account for 80% of the membrane lipids found in green plant tissues. These lipids are major constituents of photosynthetic membranes (thylakoids), and a large body of evidence suggests that galactolipids are associated primarily with plastid membranes in seed plants. A null-mutant of Arabidopsis (dgd1), which lacks the DGDG synthase (DGD1) resulting in a 90% reduction in the amount of DGDG under normal growth conditions, accumulated DGDG after phosphate deprivation up to 60% of the amount present in the wild type. This observation suggests the existence of a DGD1-independent pathway of galactolipid biosynthesis. The fatty acid composition of the newly formed DGDG was distinct, showing an enrichment of 16-carbon fatty acids in the C-1 position of the glycerol backbone of DGDG. Roots with their rudimentary plastids accumulated large amounts of DGDG after phosphate deprivation, suggesting that this galactolipid may be located in extraplastidic membranes. Corroborating evidence for this hypothesis was obtained directly by fractionation of subcellular membranes from leaf tissue and indirectly by lipid analysis of the phosphate-deprived fad3 mutant primarily deficient in extraplastidic fatty acid desaturation. The discovery of extraplastidic DGDG biosynthesis induced by phosphate deprivation has revealed a biochemical mechanism for plants to conserve phosphate. Apparently, plants replace phospholipids with nonphosphorous galactolipids if environmental conditions such as phosphate deprivation require this for survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Arabidopsis thaliana, trichome cells are specialized unicellular structures with uncertain functions. Based on earlier observations that one of the genes involved in cysteine biosynthesis (Atcys-3A) is highly expressed in trichomes, we have extended our studies in trichome cells to determine their capacity for glutathione (GSH) biosynthesis. First, we have analyzed by in situ hybridization the tissue-specific expression of the genes Atcys-3A and sat5, which encode O-acetylserine(thio)lyase (OASTL) and serine acetyltransferase (SAT), respectively, as well as gsh1 and gsh2, which encode γ-glutamylcysteine synthetase and glutathione synthetase, respectively. The four genes are highly expressed in leaf trichomes of Arabidopsis, and their mRNA accumulate to high levels. Second, we have directly measured cytoplasmic GSH concentration in intact cells by laser-scanning microscopy after labeling with monochlorobimane as a GSH-specific probe. From these measurements, cytosolic GSH concentrations of 238 ± 25, 80 ± 2, and 144 ± 19 μM were estimated for trichome, basement, and epidermal cells, respectively. Taking into account the volume of the cells measured using stereological techniques, the trichomes have a total GSH content more than 300-fold higher than the basement and epidermal cells. Third, after NaCl treatment, GSH biosynthesis is markedly decreased in trichomes. Atcys-3A, sat5, gsh1, and gsh2 mRNA levels show a decrease in transcript abundance, and [GSH]cyt is reduced to 47 ± 5 μM. These results suggest the important physiological significance of trichome cells related to GSH biosynthesis and their possible role as a sink during detoxification processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell division and differentiation continue throughout the plant life cycle without significant loss of control. However, little is known about the mechanisms that allow the continuous development of meristems. Cell division is controlled by a family of cyclin-dependent kinases (CDKs). CDK-activating kinases (CAKs) are known to phosphorylate and activate almost all CDKs and thus may have a crucial role in controlling CDK activities in each cell of the meristems. Here, we show that overexpression of sense or antisense gene for Cak1At in Arabidopsis by using the glucocorticoid-mediated transcriptional induction system resulted in a reduction of CDK activities. After 14â24 h of glucocorticoid treatment, starch granules appeared in columellar initials in the root meristem, and cortical initials were periclinally divided into cortical and endodermal cells. Accumulation of the cyclin∷β-glucuronidase fusion protein ceased after 72 h of glucocorticoid treatment. Our results indicate that a change of Cak1At activity leads to differentiation of initial cells, followed by cessation of cell division. Therefore, we propose that differentiation of initial cells is controlled by Cak1At but is maintained independent of cell division.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants are continuously subjected to UV-B radiation (UV-B; 280â320 nm) as a component of sunlight causing damage to the genome. For elimination of DNA damage, a set of repair mechanisms, mainly photoreactivation, excision, and recombination repair, has evolved. Whereas photoreactivation and excision repair have been intensely studied during the last few years, recombination repair, its regulation, and its interrelationship with photoreactivation in response to UV-B-induced DNA damage is still poorly understood. In this study, we analyzed somatic homologous recombination in a transgenic Arabidopsis line carrying a β-glucuronidase gene as a recombination marker and in offsprings of crosses of this line with a photolyase deficient uvr2â1 mutant. UV-B radiation stimulated recombination frequencies in a dose-dependent manner correlating linearly with cyclobutane pyrimidine dimer (CPD) levels. Genetic deficiency for CPD-specific photoreactivation resulted in a drastic increase of recombination events, indicating that homologous recombination might be directly involved in eliminating CPD damage. UV-B irradiation stimulated recombination mainly in the presence of photosynthetic active radiation (400â700 nm) irrespective of photolyase activities. Our results suggest that UV-B-induced recombination processes may depend on energy supply derived from photosynthesis.