333 resultados para Antagonistic yeast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian Cdk5 is a member of the cyclin-dependent kinase family that is activated by a neuron-specific regulator, p35, to regulate neuronal migration and neurite outgrowth. p35/Cdk5 kinase colocalizes with and regulates the activity of the Pak1 kinase in neuronal growth cones and likely impacts on actin cytoskeletal dynamics through Pak1. Here, we describe a functional homologue of Cdk5 in budding yeast, Pho85. Like Cdk5, Pho85 has been implicated in actin cytoskeleton regulation through phosphorylation of an actin-regulatory protein. Overexpression of CDK5 in yeast cells complemented most phenotypes associated with pho85Δ, including defects in the repression of acid phosphatase expression, sensitivity to salt, and a G1 progression defect. Consistent with the functional complementation, Cdk5 associated with and was activated by the Pho85 cyclins Pho80 and Pcl2 in yeast cells. In a reciprocal series of experiments, we found that Pho85 associated with the Cdk5 activators p35 and p25 to form an active kinase complex in mammalian and insect cells, supporting our hypothesis that Pho85 and Cdk5 are functionally related. Our results suggest the existence of a functionally conserved pathway involving Cdks and actin-regulatory proteins that promotes reorganization of the actin cytoskeleton in response to regulatory signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall folded (global) structure of mRNA may be critical to translation and turnover control mechanisms, but it has received little experimental attention. Presented here is a comparative analysis of the basic features of the global secondary structure of a synthetic mRNA and the same intracellular eukaryotic mRNA by dimethyl sulfate (DMS) structure probing. Synthetic MFA2 mRNA of Saccharomyces cerevisiae first was examined by using both enzymes and chemical reagents to determine single-stranded and hybridized regions; RNAs with and without a poly(A) tail were compared. A folding pattern was obtained with the aid of the mfold program package that identified the model that best satisfied the probing data. A long-range structural interaction involving the 5′ and 3′ untranslated regions and causing a juxtaposition of the ends of the RNA, was examined further by a useful technique involving oligo(dT)-cellulose chromatography and antisense oligonucleotides. DMS chemical probing of A and C nucleotides of intracellular MFA2 mRNA was then done. The modification data support a very similar intracellular structure. When low reactivity of A and C residues is found in the synthetic RNA, ≈70% of the same sites are relatively more resistant to DMS modification in vivo. A slightly higher sensitivity to DMS is found in vivo for some of the A and C nucleotides predicted to be hybridized from the synthetic structural model. With this small mRNA, the translation process and mRNA-binding proteins do not block DMS modifications, and all A and C nucleotides are modified the same or more strongly than with the synthetic RNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isomerization of chorismate to prephenate by chorismate mutase in the biosynthetic pathway that forms Tyr and Phe involves C5—O (ether) bond cleavage and C1—C9 bond formation in a Claisen rearrangement. Development of negative charge on the ether oxygen, stabilized by Lys-168 and Glu-246, is inferred from the structure of a complex with a transition state analogue (TSA) and from the pH-rate profile of the enzyme and the E246Q mutant. These studies imply a protonated Glu-246 well above pH 7. Here, several 500-ps molecular dynamics simulations test the stability of enzyme–TSA complexes by using a solvated system with stochastic boundary conditions. The simulated systems are (i) protonated Glu-246 (stable), (ii) deprotonated Glu-246 (unstable), (iii) deprotonated Glu-246 plus one H2O between Glu-246 and the ether oxygen (unstable), (iv) the E246Q mutant (stable), and (v) addition of OH− between protonated Glu-246 and the ether oxygen. In (v), a local conformational change of Lys-168 displaced the OH− into the solvent region, suggesting a possible rate-determining step that precedes the catalytic step. In a 500-ps simulation of the enzyme complexed with the reactant chorismate or the product prephenate, no water molecule remained near the oxygen of the ligand. Calculations using the linearized Poisson–Boltzmann equation show that the effective pKa of Glu-246 is shifted from 5.8 to 8.1 as the negative charge on the ether oxygen of the TSA is changed from −0.56 electron to −0.9 electron. Altogether, these results support retention of a proton on Glu-246 to high pH and the absence of a water molecule in the catalytic steps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously provided evidence that the protein encoded by the highly conserved skb1 gene is a putative regulator of Shk1, a p21Cdc42/Rac-activated kinase (PAK) homolog in the fission yeast Schizosaccharomyces pombe. skb1 null mutants are viable and competent for mating but less elongate than wild-type S. pombe cells, whereas cells that overexpress skb1 are hyperelongated. These phenotypes suggest a possible role for Skb1 as a mitotic inhibitor. Here we show genetic interactions of both skb1 and shk1 with genes encoding key mitotic regulators in S. pombe. Our results indicate that Skb1 negatively regulates mitosis by a mechanism that is independent of the Cdc2-activating phosphatase Cdc25 but that is at least partially dependent on Shk1 and the Cdc2 inhibitory kinase Wee1. We provide biochemical evidence for association of Skb1 and Shk1 with Cdc2 in S. pombe, suggesting that Skb1 and Shk1 inhibit mitosis through interaction with the Cdc2 complex, rather than by an indirect mechanism. These results provide evidence of a previously undescribed role for PAK-related protein kinases as mitotic inhibitors. We also describe the cloning of a human homolog of skb1, SKB1Hs, and show that it can functionally replace skb1 in S. pombe. Thus, the molecular functions of Skb1-related proteins have likely been substantially conserved through evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae myosin-V, Myo2p, has been implicated in the polarized movement of several organelles and is essential for yeast viability. We have shown previously that Myo2p is required for the movement of a portion of the lysosome (vacuole) into the bud and consequently for proper inheritance of this organelle during cell division. Class V myosins have a globular carboxyl terminal tail domain that is proposed to mediate localization of the myosin, possibly through interaction with organelle-specific receptors. Here we describe a myo2 allele whose phenotypes support this hypothesis. vac15–1/myo2–2 has a single mutation in this globular tail domain, causing defects in vacuole movement and inheritance. Although a portion of wild-type Myo2p fractionates with the vacuole, the myo2–2 gene product does not. In addition, the mutant protein does not concentrate at sites of active growth, the predominant location of wild-type Myo2p. Although deletion of the tail domain is lethal, the myo2–2 gene product retains the essential functions of Myo2p. Moreover, myo2–2 does not cause the growth defects and lethal genetic interactions seen in myo2–66, a mutant defective in the actin-binding domain. These observations suggest that the myo2–2 mutation specifically disrupts interactions with selected myosin receptors, namely those on the vacuole membrane and those at sites of polarized growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sickle cell anemia (SCA) and thalassemia are among the most common genetic diseases worldwide. Current approaches to the development of murine models of SCA involve the elimination of functional murine α- and β-globin genes and substitution with human α and βs transgenes. Recently, two groups have produced mice that exclusively express human HbS. The transgenic lines used in these studies were produced by coinjection of human α-, γ-, and β-globin constructs. Thus, all of the transgenes are integrated at a single chromosomal site. Studies in transgenic mice have demonstrated that the normal gene order and spatial organization of the members of the human β-globin gene family are required for appropriate developmental and stage-restricted expression of the genes. As the cis-acting sequences that participate in activation and silencing of the γ- and β-globin genes are not fully defined, murine models that preserve the normal structure of the locus are likely to have significant advantages for validating future therapies for SCA. To produce a model of SCA that recapitulates not only the phenotype, but also the genotype of patients with SCA, we have generated mice that exclusively express HbS after transfer of a 240-kb βs yeast artificial chromosome. These mice have hemolytic anemia, 10% irreversibly sickled cells in their peripheral blood, reticulocytosis, and other phenotypic features of SCA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The translation initiation factor eIF4E mediates the binding of the small ribosomal subunit to the cap structure at the 5′ end of the mRNA. In Saccharomyces cerevisiae, the cap-binding protein eIF4E is mainly associated with eIF4G, forming the cap-binding complex eIF4F. Other proteins are detected upon purification of the complex on cap-affinity columns. Among them is p20, a protein of unknown function encoded by the CAF20 gene. Here, we show a negative regulatory role for the p20 protein in translation initiation. Deletion of CAF20 partially suppresses mutations in translation initiation factors. Overexpression of the p20 protein results in a synthetic enhancement of translation mutation phenotypes. Similar effects are observed for mutations in the DED1 gene, which we have isolated as a multicopy suppressor of a temperature-sensitive eIF4E mutation. The DED1 gene encodes a putative RNA helicase of the DEAD-box family. The analyses of its suppressor activity, of polysome profiles of ded1 mutant strains, and of synthetic lethal interactions with different translation mutants indicate that the Ded1 protein has a role in translation initiation in S. cerevisiae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the yeast Saccharomyces cerevisiae, meiotic recombination is initiated by transient DNA double-strand breaks (DSBs) that are repaired by interaction of the broken chromosome with its homologue. To identify a large number of DSB sites and gain insight into the control of DSB formation at both the local and the whole chromosomal levels, we have determined at high resolution the distribution of meiotic DSBs along the 340 kb of chromosome III. We have found 76 DSB regions, mostly located in intergenic promoter-containing intervals. The frequency of DSBs varies at least 50-fold from one region to another. The global distribution of DSB regions along chromosome III is nonrandom, defining large (39–105 kb) chromosomal domains, both hot and cold. The distribution of these localized DSBs indicates that they are likely to initiate most crossovers along chromosome III, but some discrepancies remain to be explained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GEF1 is a gene in Saccharomyces cerevisiae, which encodes a putative voltage-regulated chloride channel. gef1 mutants have a defect in the high-affinity iron transport system, which relies on the cell surface multicopper oxidase Fet3p. The defect is due to an inability to transfer Cu+ to apoFet3p within the secretory apparatus. We demonstrate that the insertion of Cu into apoFet3p is dependent on the presence of Cl−. Cu-loading of apoFet3p is favored at acidic pH, but in the absence of Cl− there is very little Cu-loading at any pH. Cl− has a positive allosteric effect on Cu-loading of apoFet3p. Kinetic studies suggest that Cl− may also bind to Fet3p and that Cu+ has an allosteric effect on the binding of Cl− to the enzyme. Thus, Cl− may be required for the metal loading of proteins within the secretory apparatus. These results may have implications in mammalian physiology, as mutations in human intracellular chloride channels result in disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three yeast A kinase catalytic subunit isoforms are redundant for viability. We demonstrate that they have dramatically different roles in pseudohyphal development: Tpk2 is essential, whereas Tpk3 inhibits. Tpk1 has no discernible effect. Two-hybrid analysis identified the transcription factor Sfl1 as a protein that interacts specifically with Tpk2, but not Tpk1 or Tpk3. Deletion of SFL1 enhances pseudohyphal and invasive growth. Flo11, a cell surface flocculin required for pseudohyphal development, is transcriptionally regulated by Tpk2 and Sfl1. Genetic evidence indicates that Tpk2 acts upstream of Sfl1 in the regulation of Flo11.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cdc7p protein kinase is essential for the G1/S transition and initiation of DNA replication during the cell division cycle in Saccharomyces cerevisiae. Cdc7p appears to be an evolutionarily conserved protein, since a homolog Hsk1 has been isolated from Schizosaccharomyces pombe. Here, we report the isolation of a human cDNA, HsCdc7, whose product is closely related in sequence to Cdc7p and Hsk1. The HsCdc7 cDNA encodes a protein of 574 amino acids with predicted size of 64 kDa. HsCdc7 contains the conserved subdomains common to all protein-serine/threonine kinases and three “kinase inserts” that are characteristic of Cdc7p and Hsk1. Immune complexes of HsCdc7 from cell lysates were able to phosphorylate histone H1 in vitro. Indirect immunofluorescence staining demonstrated that HsCdc7 protein was predominantly localized in the nucleus. Although the expression levels of HsCdc7 appeared to be constant throughout the cell cycle, the protein kinase activity of HsCdc7 increased during S phase of the cell cycle at approximately the same time as that of Cdk2. These results, together with the functions of Cdc7p in yeast, suggest that HsCdc7 may phosphorylate critical substrate(s) that regulate the G1/S phase transition and/or DNA replication in mammalian cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skipping of internal exons during removal of introns from pre-mRNA must be avoided for proper expression of most eukaryotic genes. Despite significant understanding of the mechanics of intron removal, mechanisms that ensure inclusion of internal exons in multi-intron pre-mRNAs remain mysterious. Using a natural two-intron yeast gene, we have identified distinct RNA–RNA complementarities within each intron that prevent exon skipping and ensure inclusion of internal exons. We show that these complementarities are positioned to act as intron identity elements, bringing together only the appropriate 5′ splice sites and branchpoints. Destroying either intron self-complementarity allows exon skipping to occur, and restoring the complementarity using compensatory mutations rescues exon inclusion, indicating that the elements act through formation of RNA secondary structure. Introducing new pairing potential between regions near the 5′ splice site of intron 1 and the branchpoint of intron 2 dramatically enhances exon skipping. Similar elements identified in single intron yeast genes contribute to splicing efficiency. Our results illustrate how intron secondary structure serves to coordinate splice site pairing and enforce exon inclusion. We suggest that similar elements in vertebrate genes could assist in the splicing of very large introns and in the evolution of alternative splicing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genetic properties of the non-Mendelian element, [URE3], suggest that it is a prion (infectious protein) form of Ure2p, a mediator of nitrogen regulation in Saccharomyces cerevisiae. Into a ure2Δ strain (necessarily lacking [URE3]), we introduced a plasmid overproducing Ure2p. This induced the frequent “spontaneous generation” of [URE3], with properties identical to the original [URE3]. Altering the translational frame only in the prion-inducing domain of URE2 shows that it is Ure2 protein (and not URE2 RNA) that induces appearance of [URE3]. The proteinase K-resistance of Ure2p is unique to [URE3] strains and is not seen in nitrogen regulation of normal strains. The prion-inducing domain of Ure2p (residues 1–65) can propagate [URE3] in the absence of the C-terminal part of the molecule. In contrast, the C-terminal part of Ure2p cannot be converted to the prion (inactive) form without the prion-inducing domain covalently attached. These experiments support the prion model for [URE3] and extend our understanding of its propagation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yeast transport GTPase Ypt6p is dispensable for cell growth and secretion, but its lack results in temperature sensitivity and missorting of vacuolar carboxypeptidase Y. We previously identified four yeast genes (SYS1, 2, 3, and 5) that on high expression suppressed these phenotypic alterations. SYS3 encodes a 105-kDa protein with a predicted high α-helical content. It is related to a variety of mammalian Golgi-associated proteins and to the yeast Uso1p, an essential protein involved in docking of endoplasmic reticulum–derived vesicles to the cis-Golgi. Like Uso1p, Sys3p is predominatly cytosolic. According to gel chromatographic, two-hybrid, and chemical cross-linking analyses, Sys3p forms dimers and larger protein complexes. Its loss of function results in partial missorting of carboxypeptidase Y. Double disruptions of SYS3 and YPT6 lead to a significant growth inhibition of the mutant cells, to a massive accumulation of 40- to 50-nm vesicles, to an aggravation of vacuolar protein missorting, and to a defect in α-pheromone processing apparently attributable to a perturbation of protease Kex2p cycling between the Golgi and a post-Golgi compartment. The results of this study suggest that Sys3p, like Ypt6p, acts in vesicular transport (presumably at a vesicle-docking stage) between an endosomal compartment and the most distal Golgi compartment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yeast Saccharomyces cerevisiae contains two genes, PDE1 and PDE2, which respectively encode a low-affinity and a high-affinity cAMP phosphodiesterase. The physiological function of the low-affinity enzyme Pde1 is unclear. We show that deletion of PDE1, but not PDE2, results in a much higher cAMP accumulation upon addition of glucose or upon intracellular acidification. Overexpression of PDE1, but not PDE2, abolished the agonist-induced cAMP increases. These results indicate a specific role for Pde1 in controlling glucose and intracellular acidification-induced cAMP signaling. Elimination of a putative protein kinase A (PKA) phosphorylation site by mutagenesis of serine252 into alanine resulted in a Pde1ala252 allele that apparently had reduced activity in vivo. Its presence in a wild-type strain partially enhanced the agonist-induced cAMP increases compared with pde1Δ. The difference between the Pde1ala252 allele and wild-type Pde1 was strongly dependent on PKA activity. In a RAS2val19 pde2Δ background, the Pde1ala252 allele caused nearly the same hyperaccumulation of cAMP as pde1Δ, while its expression in a PKA-attenuated strain caused the same reduction in cAMP hyperaccumulation as wild-type Pde1. These results suggest that serine252 might be the first target site for feedback inhibition of cAMP accumulation by PKA. We show that Pde1 is rapidly phosphorylated in vivo upon addition of glucose to glycerol-grown cells, and this activation is absent in the Pde1ala252 mutant. Pde1 belongs to a separate class of phosphodiesterases and is the first member shown to be phosphorylated. However, in vitro the Pde1ala252 enzyme had the same catalytic activity as wild-type Pde1, both in crude extracts and after extensive purification. This indicates that the effects of the S252A mutation are not caused by simple inactivation of the enzyme. In vitro phosphorylation of Pde1 resulted in a modest and variable increase in activity, but only in crude extracts. This was absent in Pde1ala252, and phosphate incorporation was strongly reduced. Apparently, phosphorylation of Pde1 does not change its intrinsic activity or affinity for cAMP but appears to be important in vivo for protein-protein interaction or for targeting Pde1 to a specific subcellular location. The PKA recognition site is conserved in the corresponding region of the Schizosaccharomyces pombe and Candida albicans Pde1 homologues, possibly indicating a similar control by phosphorylation.