136 resultados para Amino Acid transport


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although trypanosomatids are known to rapidly transaminate exogenous aromatic amino acids in vitro and in vivo, the physiological significance of this reaction is not understood. In postmitochondrial supernatants prepared from Trypanosoma brucei brucei and Crithidia fasciculata, we have found that aromatic amino acids were the preferred amino donors for the transamination of alpha-ketomethiobutyrate to methionine. Intact C. fasciculata grown in the presence of [15N]tyrosine were found to contain detectable [15N]methionine, demonstrating that this reaction occurs in situ in viable cells. This process is the final step in the recycling of methionine from methylthioadenosine, a product of decarboxylated S-adenosylmethionine from the polyamine synthetic pathway. Mammalian liver, in contrast, preferentially used glutamine for this reaction and utilized a narrower range of amino donors than seen with the trypanosomatids. Studies with methylthioadenosine showed that this compound was readily converted to methionine, demonstrating a fully functional methionine-recycling pathway in trypanosomatids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amino acid sequences of a number of closely related proteins ("napin") isolated from Brassica napus were determined by mass spectrometry without prior separation into individual components. Some of these proteins correspond to those previously deduced (napA, BngNAP1, and gNa), chiefly from DNA sequences. Others were found to differ to a varying extent (BngNAP1', BngNAP1A, BngNAP1B, BngNAP1C, gNa', and gNaA). The short chains of gNa and gNa' and of BngNAP1 and BngNAP1' differ by the replacement of N-terminal proline by pyroglutamic acid; the long chains of gNaA and BngNAP1B contain a six amino acid stretch, MQGQQM, which is present in gNa (according to its DNA sequence) but absent from BngNAP1 and BngNAP1C. These alternations of sequences between napin isoforms are most likely due to homologous recombination of the genetic material, but some of the changes may also be due to RNA editing. The amino acids that follow the untruncated C termini of those napin chains for which the DNA sequences are known (napA, BngNAP1, and gNa) are aromatic amino acids. This suggests that the processing of the proprotein leading to the C termini of the two chains is due to the action of a protease that specifically cleaves a G/S-F/Y/W bond.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An adipocyte membrane glycoprotein, (FAT), homologous to human CD36, has been previously implicated in the binding/transport of long-chain fatty acids. It bound reactive derivatives of long-chain fatty acids and binding was specific and associated with significant inhibition of fatty acid uptake. Tissue distribution of the protein and regulation of its expression were also consistent with its postulated role. In this report, we have examined the effects of FAT expression on rates and properties of fatty acid uptake by Ob17PY fibroblasts lacking the protein. Three clones (P21, P22, and P25) were selected based on FAT mRNA and protein levels. Cell surface labeling could be demonstrated with the anti-CD36 antibody FITC-OKM5. In line with this, the major fraction of immunoreactive FAT was associated with the plasma membrane fraction. Assays of oleate and/or palmitate uptake demonstrated higher rates in the three FAT-expressing clones, compared to cells transfected with the empty vector. Clone P21, which had the highest protein levels on Western blots, exhibited the largest increase in transport rates. Fatty acid uptake in FAT-expressing P21 cells reflected two components, a phloretin-sensitive high-affinity saturable component with a Km of 0.004 microM and a basal phloretin-insensitive component that was a linear function of unbound fatty acid. P21 cells incorporated more exogenous fatty acid into phospholipids, indicating that binding of fatty acids was followed by their transfer into the cell and that both processes were increased by FAT expression. The data support the interpretation that FAT/CD36 functions as a high-affinity membrane receptor/transporter for long-chain fatty acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dihydrodipicolinate synthase (DHPS; EC 4.2.1.52) catalyzes the first step in biosynthesis of lysine in plants and bacteria. DHPS in plants is highly sensitive to end-product inhibition by lysine and, therefore, has an important role in regulating metabolite flux into lysine. To better understand the feedback inhibition properties of the plant enzyme, we transformed a maize cDNA for lysine-sensitive DHPS into an Escherichia coli strain lacking DHPS activity. Cells were mutagenized with ethylmethanesulfonate, and potential DHPS mutants were selected by growth on minimal medium containing the inhibitory lysine analogue S-2-aminoethyl-L-cysteine. DHPS assays identified surviving colonies expressing lysine-insensitive DHPS activity. Ten single-base-pair mutations were identified in the maize DHPS cDNA sequence; these mutations were specific to one of three amino acid residues (amino acids 157, 162, and 166) localized within a short region of the polypeptide. No other mutations were present in the remaining DHPS cDNA sequence, indicating that altering only one of the three residues suffices to eliminate lysine inhibition of maize DHPS. Identification of these specific mutations that change the highly sensitive maize DHPS to a lysine-insensitive isoform will help resolve the lysine-binding mechanism and the resultant conformational changes involved in inhibition of DHPS activity. The plant-derived mutant DHPS genes may also be used to improve nutritional quality of maize or other cereal grains that have inadequate lysine content when fed to animals such as poultry, swine, or humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide synthases (NOSs) require tetrahydrobiopterin (BH4) for dimerization and NO production. Mutation analysis of mouse inducible NOS (iNOS; NOS2) identified Gly-450 and Ala-453 as critical for NO production, dimer formation, and BH4 binding. Substitutions at five neighboring positions were tolerated, and normal binding of heme, calmodulin, and NADPH militated against major distortions affecting the NH2-terminal portion, midzone, or COOH terminus of the inactive mutants. Direct involvement of residues 450 and 453 in the binding of BH4 is supported by the striking homology of residues 448-480 to a region extensively shared by the three BH4-utilizing aromatic amino acid hydroxylases and is consistent with the conservation of these residues among all 10 reported NOS sequences, including mammalian NOSs 1, 2, and 3, as well as avian and insect NOSs. Altered binding of BH4 and/or L-arginine may explain how the addition of a single methyl group to the side chain of residue 450 or the addition of three methylenes to residue 453 can each abolish an enzymatic activity that reflects the concerted function of 1143 other residues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A class of bicuculline-insensitive gamma-aminobutyric acid (GABA) receptors, GABAC, has been identified in retina. Several lines of evidence indicate that GABAC receptors are formed partially or wholly of GABA rho subunits. These receptors generate a Cl- current in response to GABA but differ from GABAA receptors in a number of ways. Picrotoxin, widely accepted as a noncompetitive antagonist of GABAA receptors, displays competitive and noncompetitive antagonism of GABAC receptors in perch and bovine retina and GABA rho 1 receptors expressed in Xenopus oocytes. The aim of this study was to identify the molecular basis of the two components of picrotoxin inhibition of GABA rho 1 receptors. By using a domain-swapping and mutagenesis strategy, a difference in picrotoxin sensitivity between rho 1 and rho 2 receptors was localized to a single amino acid in the putative second transmembrane domain. Substitution of this amino acid with residues found in the analogous position in highly picrotoxin-sensitive glycine alpha and GABAA subunits increased the sensitivity of rho 1 mutants 10- to 500-fold. Importantly, the competitive component of picrotoxin inhibition of the rho 1 mutant receptors was almost eliminated. These findings demonstrate that an amino acid in the putative channel domain of GABA rho 1 receptors influences picrotoxin sensitivity and mediates agonist binding by an allosteric mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in vitro genetic system was developed as a rapid means for studying the specificity determinants of RNA-binding proteins. This system was used to investigate the origin of the RNA-binding specificity of the mammalian spliceosomal protein U1A. The U1A domain responsible for binding to U1 small nuclear RNA was locally mutagenized and displayed as a combinatorial library on filamentous bacteriophage. Affinity selection identified four U1A residues in the mutagenized region that are important for specific binding to U1 hairpin II. One of these residues (Leu-49) disproportionately affects the rates of binding and release and appears to play a critical role in locking the protein onto the RNA. Interestingly, a protein variant that binds more tightly than U1A emerged during the selection, showing that the affinity of U1A for U1 RNA has not been optimized during evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhizobium meliloti C4-dicarboxylic acid transport protein D (DCTD) activates transcription by a form of RNA polymerase holoenzyme that has sigma 54 as its sigma factor (referred to as E sigma 54). DCTD catalyzes the ATP-dependent isomerization of closed complexes between E sigma 54 and the dctA promoter to transcriptionally productive open complexes. Transcriptional activation probably involves specific protein-protein interactions between DCTD and E sigma 54. Interactions between sigma 54-dependent activators and E sigma 54 are transient, and there has been no report of a biochemical assay for contact between E sigma 54 and any activator to date. Heterobifunctional crosslinking reagents were used to examine protein-protein interactions between the various subunits of E sigma 54 and DCTD. DCTD was crosslinked to Salmonella typhimurium sigma 54 with the crosslinking reagents succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate and N-hydroxysulfosuccinimidyl-4-azidobenzoate. Cys-307 of sigma 54 was identified by site-directed mutagenesis as the residue that was crosslinked to DCTD. DCTD was also crosslinked to the beta subunit of Escherichia coli core RNA polymerase with succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate, but not with N-hydroxysulfosuccinimidyl-4-azidobenzoate. These data suggest that interactions of DCTD with sigma 54 and the beta subunit may be important for transcriptional activation and offer evidence for interactions between a sigma 54-dependent activator and sigma 54, as well as the beta subunit of RNA polymerase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different autoantigens are thought to be involved in the pathogenesis of insulin-dependent diabetes mellitus, and they may account for the variation in the clinical presentation of the disease. Sera from patients with autoimmune polyendocrine syndrome type I contain autoantibodies against the beta-cell proteins glutamate decarboxylase and an unrelated 51-kDa antigen. By screening of an expression library derived from rat insulinoma cells, we have identified the 51-kDa protein as aromatic-L-amino-acid decarboxylase (EC 4.1.1.28). In addition to the previously published full-length cDNA, forms coding for a truncated and an alternatively spliced version were identified. Aromatic L-amino acid decarboxylase catalyzes the decarboxylation of L-5-hydroxytryptophan to serotonin and that of L-3,4-dihydroxyphenylalanine to dopamine. Interestingly, pyridoxal phosphate is the cofactor of both aromatic L-amino acid decarboxylase and glutamate decarboxylase. The biological significance of the neurotransmitters produced by the two enzymes in the beta cells remains largely unknown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a method for predicting protein folding class based on global protein chain description and a voting process. Selection of the best descriptors was achieved by a computer-simulated neural network trained on a data base consisting of 83 folding classes. Protein-chain descriptors include overall composition, transition, and distribution of amino acid attributes, such as relative hydrophobicity, predicted secondary structure, and predicted solvent exposure. Cross-validation testing was performed on 15 of the largest classes. The test shows that proteins were assigned to the correct class (correct positive prediction) with an average accuracy of 71.7%, whereas the inverse prediction of proteins as not belonging to a particular class (correct negative prediction) was 90-95% accurate. When tested on 254 structures used in this study, the top two predictions contained the correct class in 91% of the cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolutionary selection of sequences is studied with a knowledge-based Hamiltonian to find the design principle for folding to a model protein structure. With sequences selected by naive energy minimization, the model structure tends to be unstable and the folding ability is low. Sequences with high folding ability have only the low-lying energy minimum but also an energy landscape which is similar to that found for the native sequence over a wide region of the conformation space. Though there is a large fluctuation in foldable sequences, the hydrophobicity pattern and the glycine locations are preserved among them. Implications of the design principle for the molecular mechanism of folding are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The beta-amyloid precursor protein (beta-APP), from which the beta-A4 peptide is derived, is considered to be central to the pathogenesis of Alzheimer disease (AD). Transgenic mice expressing the 751-amino acid isoform of human beta-APP (beta-APP751) have been shown to develop early AD-like histopathology with diffuse deposits of beta-A4 and aberrant tau protein expression in the brain, particularly in the hippocampus, cortex, and amygdala. We now report that beta-APP751 transgenic mice exhibit age-dependent deficits in spatial learning in a water-maze task and in spontaneous alternation in a Y maze. These deficits were mild or absent in 6-month-old transgenic mice but were severe in 12-month-old transgenic mice compared to age-matched wild-type control mice. No other behavioral abnormalities were observed. These mice therefore model the progressive learning and memory impairment that is a cardinal feature of AD. These results provide evidence for a relationship between abnormal expression of beta-APP and cognitive impairments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinant antibodies capable of sequence-specific interactions with nucleic acids represent a class of DNA- and RNA-binding proteins with potential for broad application in basic research and medicine. We describe the rational design of a DNA-binding antibody, Fab-Ebox, by replacing a variable segment of the immunoglobulin heavy chain with a 17-amino acid domain derived from TFEB, a class B basic helix-loop-helix protein. DNA-binding activity was studied by electrophoretic mobility-shift assays in which Fab-Ebox was shown to form a specific complex with DNA containing the TFEB recognition motif (CACGTG). Similarities were found in the abilities of TFEB and Fab-Ebox to discriminate between oligodeoxyribonucleotides containing altered recognition sequences. Comparable interference of binding by methylation of cytosine residues indicated that Fab-Ebox and TFEB both contact DNA through interactions along the major groove of double-stranded DNA. The results of this study indicate that DNA-binding antibodies of high specificity can be developed by using the modular nature of both immunoglobulins and transcription factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The periodic distribution of residues in the sequence of 469 putative transmembrane alpha-helices from eukaryotic plasma membrane polytopic proteins has been analyzed with correlation matrices. The method does not involve any a priori assumption about the secondary structure of the segments or about the physicochemical properties of individual amino acid residues. Maximal correlation is observed at 3.6 residues per period, characteristic of alpha-helices. A scale extracted from the data describes the propensity of the various residues to lie on the same or on opposite helix faces. The most polar face of transmembrane helices, presumably that buried in the protein core, shows a strong enrichment in aromatic residues, while residues likely to face the fatty acyl chains of lipids are largely aliphatic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generation of transport vesicles at the endoplasmic reticulum (ER) depends on cytosolic proteins, which, in the form of subcomplexes (Sec23p/Sec24p; Sec13p/Sec31p) are recruited to the ER membrane by GTP-bound Sar1p and form the coat protein complex II (COPII). Using affinity chromatography and two-hybrid analyses, we found that the essential COPII component Sec24p, but not Sec23p, binds to the cis-Golgi syntaxin Sed5p. Sec24p/Sed5p interaction in vitro was not dependent on the presence of [Sar1p⋅GTP]. The binding of Sec24p to Sed5p is specific; none of the other seven yeast syntaxins bound to this COPII component. Whereas the interaction site of Sec23p is within the N-terminal half of the 926-aa-long Sec24p (amino acid residues 56–549), Sed5p binds to the N- and C-terminal halves of the protein. Destruction by mutagenesis of a potential zinc finger within the N-terminal half of Sec24p led to a nonfunctional protein that was still able to bind Sec23p and Sed5p. Sec24p/Sed5p binding might be relevant for cargo selection during transport-vesicle formation and/or for vesicle targeting to the cis-Golgi.