133 resultados para Adenosylmethionine Decarboxylase Inhibitor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We cloned a new inhibitor of apoptosis protein (IAP) homolog, SfIAP, from Spodoptera frugiperda Sf-21 cells, a host of insect baculoviruses. SfIAP contains two baculovirus IAP repeat domains followed by a RING domain. SfIAP has striking amino acid sequence similarity with baculoviral IAPs, CpIAP and OpIAP, suggesting that baculoviral IAPs may be host-derived genes. SfIAP and baculoviral CpIAP inhibit Bax but not Fas-induced apoptosis in human cells. Their apoptosis-suppressing activity in mammalian cells requires both baculovirus IAP repeat and RING domains. Further biochemical data suggest that SfIAP and CpIAP are specific inhibitors of mammalian caspase-9, the pinnacle caspase in the mitochondria/cytochrome c pathway for apoptosis, but are not inhibitors of downstream caspase-3 and caspase-7. Thus the mechanisms by which insect and baculoviral IAPs suppress apoptosis may involve inhibition of an insect caspase-9 homologue. Peptides representing the IAP-binding domain of the Drosophila cell death protein Grim abrogated human caspase suppression by SfIAP and CpIAP, implying evolutionary conservation of the functions of IAPs and their inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multidrug resistance pumps (MDRs) protect microbial cells from both synthetic and natural antimicrobials. Amphipathic cations are preferred substrates of MDRs. Berberine alkaloids, which are cationic antimicrobials produced by a variety of plants, are readily extruded by MDRs. Several Berberis medicinal plants producing berberine were found also to synthesize an inhibitor of the NorA MDR pump of a human pathogen Staphylococcus aureus. The inhibitor was identified as 5′-methoxyhydnocarpin (5′-MHC), previously reported as a minor component of chaulmoogra oil, a traditional therapy for leprosy. 5′-MHC is an amphipathic weak acid and is distinctly different from the cationic substrates of NorA. 5′-MHC had no antimicrobial activity alone but strongly potentiated the action of berberine and other NorA substrates against S. aureus. MDR-dependent efflux of ethidium bromide and berberine from S. aureus cells was completely inhibited by 5′-MHC. The level of accumulation of berberine in the cells was increased strongly in the presence of 5′-MHC, indicating that this plant compound effectively disabled the bacterial resistance mechanism against the berberine antimicrobial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bruton’s tyrosine kinase (Btk) plays pivotal roles in mast cell activation as well as in B cell development. Btk mutations lead to severe impairments in proinflammatory cytokine production induced by cross-linking of high-affinity IgE receptor on mast cells. By using an in vitro assay to measure the activity that blocks the interaction between protein kinase C and the pleckstrin homology domain of Btk, terreic acid (TA) was identified and characterized in this study. This quinone epoxide specifically inhibited the enzymatic activity of Btk in mast cells and cell-free assays. TA faithfully recapitulated the phenotypic defects of btk mutant mast cells in high-affinity IgE receptor-stimulated wild-type mast cells without affecting the enzymatic activities and expressions of many other signaling molecules, including those of protein kinase C. Therefore, this study confirmed the important roles of Btk in mast cell functions and showed the usefulness of TA in probing into the functions of Btk in mast cells and other immune cell systems. Another insight obtained from this study is that the screening method used to identify TA is a useful approach to finding more efficacious Btk inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

β1-integrin engagement on normal (NL) CD34+ cells increases levels of the cyclin-dependent kinase inhibitor (cdki), p27Kip, decreases cdk2 activity, and inhibits G1/S-phase progression. In contrast, β1-integrin engagement on chronic myelogenous leukemia (CML) CD34+ cells does not inhibit G1/S progression. We now show that, in CML, baseline p27Kip levels are significantly higher than in NL CD34+ cells, but adhesion to fibronectin (FN) does not increase p27Kip levels. p27Kip mRNA levels are similar in CML and NL CD34+ cells and remain unchanged after adhesion, suggesting posttranscriptional regulation. Despite the elevated p27Kip levels, cdk2 kinase activity is similar in CML and NL CD34+ cells. In NL CD34+ cells, >90% of p27Kip is located in the nucleus, where it binds to cdk2 after integrin engagement. In CML CD34+ cells, however, >80% of p27Kip is located in the cytoplasm even in FN-adherent cells, and significantly less p27Kip is bound to cdk2. Thus, presence of BCR/ABL induces elevated levels of p27Kip and relocation of p27Kip to the cytoplasm, which contributes to the loss of integrin-mediated proliferation inhibition, characteristic of CML.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-component signaling systems involving receptor-histidine kinases are ubiquitous in bacteria and have been found in yeast and plants. These systems provide the major means by which bacteria communicate with each other and the outside world. Remarkably, very little is known concerning the extracellular ligands that presumably bind to receptor-histidine kinases to initiate signaling. The two-component agr signaling circuit in Staphylococcus aureus is one system where the ligands are known in chemical detail, thus opening the door for detailed structure–activity relationship studies. These ligands are short (8- to 9-aa) peptides containing a thiolactone structure, in which the α-carboxyl group of the C-terminal amino acid is linked to the sulfhydryl group of a cysteine, which is always the fifth amino acid from the C terminus of the peptide. One unique aspect of the agr system is that peptides that activate virulence expression in one group of S. aureus strains also inhibit virulence expression in other groups of S. aureus strains. Herein, it is demonstrated by switching the receptor-histidine kinase, AgrC, between strains of different agr specificity types, that intragroup activation and intergroup inhibition are both mediated by the same group-specific receptors. These results have facilitated the development of a global inhibitor of virulence in S. aureus, which consists of a truncated version of one of the naturally occurring thiolactone peptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histone deacetylases (HDACs) catalyze the removal of acetyl groups on the amino-terminal lysine residues of core nucleosomal histones. This activity is associated generally with transcriptional repression. We have reported previously that inhibition of HDAC activity by hydroxamic acid-based hybrid polar compounds, such as suberoylanilide hydroxamic acid (SAHA), induces differentiation and/or apoptosis of transformed cells in vitro and inhibits tumor growth in vivo. SAHA is a potentially new therapeutic approach to cancer treatment and is in Phase I clinical trials. In several tumor cell lines examined, HDAC inhibitors alter the expression of less than 1% of expressed genes, including the cell cycle kinase inhibitor p21WAF1. In T24 bladder carcinoma cells, SAHA induces up to a 9-fold increase in p21WAF1 mRNA and protein, which is, at least in part, because of an increase in the rate of transcription of the gene. SAHA causes an accumulation of acetylated histones H3 and H4 in total cellular chromatin by 2 h, which is maintained through 24 h of culture. An increase in the accumulation of acetylated H3 and H4 was detected throughout the p21WAF1 promoter and the structural gene after culture with SAHA. The level of histone acetylation did not change in chromatin associated with the actin and p27 genes, and their mRNA expression was not altered during culture of T24 cells with SAHA. Thus, the present findings indicate that the induction of p21WAF1 by SAHA is regulated, at least in part, by the degree of acetylation of the gene-associated histones and that this induced increase in acetylation is gene selective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ca2+/calmodulin-dependent protein kinase II (CaM-KII) regulates numerous physiological functions, including neuronal synaptic plasticity through the phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors. To identify proteins that may interact with and modulate CaM-KII function, a yeast two-hybrid screen was performed by using a rat brain cDNA library. This screen identified a unique clone of 1.4 kb, which encoded a 79-aa brain-specific protein that bound the catalytic domain of CaM-KII α and β and potently inhibited kinase activity with an IC50 of 50 nM. The inhibitory protein (CaM-KIIN), and a 28-residue peptide derived from it (CaM-KIINtide), was highly selective for inhibition of CaM-KII with little effect on CaM-KI, CaM-KIV, CaM-KK, protein kinase A, or protein kinase C. CaM-KIIN interacted only with activated CaM-KII (i.e., in the presence of Ca2+/CaM or after autophosphorylation) by using glutathione S-transferase/CaM-KIIN precipitations as well as coimmunoprecipitations from rat brain extracts or from HEK293 cells cotransfected with both constructs. Colocalization of CaM-KIIN with activated CaM-KII was demonstrated in COS-7 cells transfected with green fluorescent protein fused to CaM-KIIN. In COS-7 cells phosphorylation of transfected α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors by CaM-KII, but not by protein kinase C, was blocked upon cotransfection with CaM-KIIN. These results characterize a potent and specific cellular inhibitor of CaM-KII that may have an important role in the physiological regulation of this key protein kinase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Progression through the cell cycle is regulated in part by the sequential activation and inactivation of cyclin-dependent kinases (CDKs). Many signals arrest the cell cycle through inhibition of CDKs by CDK inhibitors (CKIs). p27Kip1 (p27) was first identified as a CKI that binds and inhibits cyclin A/CDK2 and cyclin E/CDK2 complexes in G1. Here we report that p27 has an additional property, the ability to induce a proteolytic activity that cleaves cyclin A, yielding a truncated cyclin A lacking the mitotic destruction box. Other CKIs (p15Ink4b, p16Ink4a, p21Cip1, and p57Kip2) do not induce cleavage of cyclin A; other cyclins (cyclin B, D1, and E) are not cleaved by the p27-induced protease activity. The C-terminal half of p27, which is dispensable for its kinase inhibitory activity, is required to induce cleavage. Mechanistically, p27 does not appear to cause cleavage through direct interaction with cyclin/CDK complexes. Instead, it activates a latent protease that, once activated, does not require the continuing presence of p27. Mutation of cyclin A at R70 or R71, residues at or very close to the cleavage site, blocks cleavage. Noncleavable mutants are still recognized by the anaphase-promoting complex/cyclosome pathway responsible for ubiquitin-dependent proteolysis of mitotic cyclins, indicating that the p27-induced cleavage of cyclin A is part of a separate pathway. We refer to this protease as Tsap (pTwenty-seven- activated protease).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth, differentiation, and programmed cell death (apoptosis) are mainly controlled by cytokines. The Janus kinase–signal transducers and activators of transcription (JAK-STAT) signal pathway is an important component of cytokine signaling. We have previously shown that STAT3 induces a molecule designated as SSI-1, which inhibits STAT3 functions. To clarify the physiological roles of SSI-1 in vivo, we generated, here, mice lacking SSI-1. These SSI-1−/− mice displayed growth retardation and died within 3 weeks after birth. Lymphocytes in the thymus and spleen of the SSI-1−/− mice exhibited accelerated apoptosis with aging, and their number was 20–25% of that in SSI-1+/+ mice at 10 days of age. However, the differentiation of lymphocytes lacking SSI-1 appeared to be normal. Among various pro- and anti-apoptotic molecules examined, an up-regulation of Bax was found in lymphocytes of the spleen and thymus of SSI-1−/− mice. These findings suggest that SSI-1 prevents apoptosis by inhibiting the expression of Bax.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuberous sclerosis is an autosomal dominant disorder characterized by the development of aberrant growths in many tissues and organs. Linkage analysis revealed two disease-determining genes on chromosome 9 and chromosome 16. The tuberous sclerosis complex gene-2 (TSC2) on chromosome 16 encodes the tumor suppressor protein tuberin. We have shown earlier that loss of TSC2 is sufficient to induce quiescent cells to enter the cell cycle. Here we show that TSC2-negative fibroblasts exhibit a shortened G1 phase. Although the expression of cyclin E, cyclin A, p21, or Cdc25A is unaffected, TSC2-negative cells express much lower amounts of the cyclin-dependent kinase (CDK) inhibitor p27 because of decreased protein stability. In TSC2 mutant cells the amount of p27 bound to CDK2 is diminished, accompanied with elevated kinase activity. Ectopic expression studies revealed that the aforementioned effects can be reverted by transfecting TSC2 in TSC2-negative cells. High ectopic levels of p27 have cell cycle inhibitory effects in TSC2-positive cells but not in TSC2-negative counterparts, although the latter still depend on CDK2 activity. Loss of TSC2 induces soft agar growth of fibroblasts, a process that cannot be inhibited by high levels of p27. Both phenotypes of TSC2-negative cells, their resistance to the activity of ectopic p27, and the instability of endogenous p27, could be explained by our observation that the nucleoprotein p27 is mislocated into the cytoplasm upon loss of TSC2. These findings provide insights into the molecular mechanism of how loss of TSC2 induces cell cycle entry and allow a better understanding of its tumor suppressor function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of the catalytically inactive mutant (C215S) of the human protein-tyrosine phosphatase 1B (PTP1B) has been solved to high resolution in two complexes. In the first, crystals were grown in the presence of bis-(para-phosphophenyl) methane (BPPM), a synthetic high-affinity low-molecular weight nonpeptidic substrate (Km = 16 μM), and the structure was refined to an R-factor of 18.2% at 1.9 Å resolution. In the second, crystals were grown in a saturating concentration of phosphotyrosine (pTyr), and the structure was refined to an R-factor of 18.1% at 1.85 Å. Difference Fourier maps showed that BPPM binds PTP1B in two mutually exclusive modes, one in which it occupies the canonical pTyr-binding site (the active site), and another in which a phosphophenyl moiety interacts with a set of residues not previously observed to bind aryl phosphates. The identification of a second pTyr molecule at the same site in the PTP1B/C215S–pTyr complex confirms that these residues constitute a low-affinity noncatalytic aryl phosphate-binding site. Identification of a second aryl phosphate binding site adjacent to the active site provides a paradigm for the design of tight-binding, highly specific PTP1B inhibitors that can span both the active site and the adjacent noncatalytic site. This design can be achieved by tethering together two small ligands that are individually targeted to the active site and the proximal noncatalytic site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two different mutations of the active-site Lys-296 in rhodopsin, K296E and K296M, have been found to cause autosomal dominant retinitis pigmentosa (ADRP). In vitro studies have shown that both mutations result in constitutive activation of the protein, suggesting that the activated state of the receptor may be responsible for retinal degeneration in patients with these mutations. Previous work has highlighted the potential of retinylamine analogs as active-site directed inactivators of constitutively active mutants of rhodopsin with the idea that these or related compounds might be used therapeutically for cases of ADRP involving mutations of the active-site Lys. Unfortunately, however, amine derivatives of 11-cis-retinal, although highly effective against a K296G mutant of rhodopsin, were without affect on the two naturally occurring ADRP mutants, presumably because of the greater steric bulk of Glu and Met side chains in comparison to Gly. For this reason we synthesized a retinylamine analog one carbon shorter than the parent 11-cis-retinal and show that this compound is indeed an effective inhibitor of both the K296E and K296M mutants. The 11-cis C19 retinylamine analog 1 inhibits constitutive activation of transducin by these mutants and their constitutive phosphorylation by rhodopsin kinase, and it does so in the presence of continuous illumination from room lights.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian brain, is synthesized by two glutamate decarboxylase isoforms, GAD65 and GAD67. The separate role of the two isoforms is unknown, but differences in saturation with cofactor and subcellular localization suggest that GAD65 may provide reserve pools of GABA for regulation of inhibitory neurotransmission. We have disrupted the gene encoding GAD65 and backcrossed the mutation into the C57BL/6 strain of mice. In contrast to GAD67−/− animals, which are born with developmental abnormalities and die shortly after birth, GAD65−/− mice appear normal at birth. Basal GABA levels and holo-GAD activity are normal, but the pyridoxal 5′ phosphate-inducible apo-enzyme reservoir is significantly decreased. GAD65−/− mice develop spontaneous seizures that result in increased mortality. Seizures can be precipitated by fear or mild stress. Seizure susceptibility is dramatically increased in GAD65−/− mice backcrossed into a second genetic background, the nonobese diabetic (NOD/LtJ) strain of mice enabling electroencephalogram analysis of the seizures. The generally higher basal brain GABA levels in this backcross are significantly decreased by the GAD65−/− mutation, suggesting that the relative contribution of GABA synthesized by GAD65 to total brain GABA levels is genetically determined. Seizure-associated c-fos-like immunoreactivity reveals the involvement of limbic regions of the brain. These data suggest that GABA synthesized by GAD65 is important in the dynamic regulation of neural network excitability, implicate at least one modifier locus in the NOD/LtJ strain, and present GAD65−/− animals as a model of epilepsy involving GABA-ergic pathways.