58 resultados para Acrosomal Biogenesis
Resumo:
The discovery that several inherited human diseases are caused by mtDNA depletion has led to an increased interest in the replication and maintenance of mtDNA. We have isolated a new mutant in the lopo (low power) gene from Drosophila melanogaster affecting the mitochondrial single-stranded DNA-binding protein (mtSSB), which is one of the key components in mtDNA replication and maintenance. lopo1 mutants die late in the third instar before completion of metamorphosis because of a failure in cell proliferation. Molecular, histochemical, and physiological experiments show a drastic decrease in mtDNA content that is coupled with the loss of respiration in these mutants. However, the number and morphology of mitochondria are not greatly affected. Immunocytochemical analysis shows that mtSSB is expressed in all tissues but is highly enriched in proliferating tissues and in the developing oocyte. lopo1 is the first mtSSB mutant in higher eukaryotes, and its analysis demonstrates the essential function of this gene in development, providing an excellent model to study mitochondrial biogenesis in animals.
Resumo:
NADP+-isocitrate dehydrogenase (NADP+-IDH; EC 1.1.1.42) is involved in the supply of 2-oxoglutarate for ammonia assimilation and glutamate synthesis in higher plants through the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle. Only one NADP+-IDH form of cytosolic localization was detected in green cotyledons of pine (Pinus spp.) seedlings. The pine enzyme was purified and exhibited molecular and kinetic properties similar to those described for NADP+-IDH from angiosperm, with a higher catalytic efficiency (105 m−1 s−1) than the deduced efficiencies for GS and GOGAT in higher plants. A polyclonal antiserum was raised against pine NADP+-IDH and used to assess protein expression in the seedlings. Steady-state levels of NADP+-IDH were coordinated with GS during seed germination and were associated with GS/GOGAT enzymes during chloroplast biogenesis, suggesting that NADP+-IDH is involved in the provision of carbon skeletons for the synthesis of nitrogen-containing molecules. However, a noncoordinated pattern of NADP+-IDH and GS/GOGAT was observed in advanced stages of cotyledon development and in the hypocotyl. A detailed analysis in hypocotyl sections revealed that NADP+-IDH abundance was inversely correlated with the presence of GS, GOGAT, and ribulose-1,5-bisphosphate carboxylase/oxygenase but was associated with the differentiation of the organ. These results cannot be explained by the accepted role of the enzyme in nitrogen assimilation and strongly suggest that NADP+-IDH may have other, as-yet-unknown, biological functions.
Resumo:
We studied aquaporins in maize (Zea mays), an important crop in which numerous studies on plant water relations have been carried out. A maize cDNA, ZmTIP1, was isolated by reverse transcription-coupled PCR using conserved motifs from plant aquaporins. The derived amino acid sequence of ZmTIP1 shows 76% sequence identity with the tonoplast aquaporin γ-TIP (tonoplast intrinsic protein) from Arabidopsis. Expression of ZmTIP1 in Xenopus laevis oocytes showed that it increased the osmotic water permeability of oocytes 5-fold; this water transport was inhibited by mercuric chloride. A cross-reacting antiserum made against bean α-TIP was used for immunocytochemical localization of ZmTIP1. These results indicate that this and/or other aquaporins is abundantly present in the small vacuoles of meristematic cells. Northern analysis demonstrated that ZmTIP1 is expressed in all plant organs. In situ hybridization showed a high ZmTIP1 expression in meristems and zones of cell enlargement: tips of primary and lateral roots, leaf primordia, and male and female inflorescence meristems. The high ZmTIP1 expression in meristems and expanding cells suggests that ZmTIP1 is needed (a) for vacuole biogenesis and (b) to support the rapid influx of water into vacuoles during cell expansion.
Resumo:
A crucial step in lysosomal biogenesis is catalyzed by “uncovering” enzyme (UCE), which removes a covering N-acetylglucosamine from the mannose 6-phosphate (Man-6-P) recognition marker on lysosomal hydrolases. This study shows that UCE resides in the trans-Golgi network (TGN) and cycles between the TGN and plasma membrane. The cytosolic domain of UCE contains two potential endocytosis motifs: 488YHPL and C-terminal 511NPFKD. YHPL is shown to be the more potent of the two in retrieval of UCE from the plasma membrane. A green-fluorescent protein-UCE transmembrane-cytosolic domain fusion protein colocalizes with TGN 46, as does endogenous UCE in HeLa cells, showing that the transmembrane and cytosolic domains determine intracellular location. These data imply that the Man-6-P recognition marker is formed in the TGN, the compartment where Man-6-P receptors bind cargo and are packaged into clathrin-coated vesicles.
Resumo:
Haemophilus influenzae is a Gram-negative bacterium that represents a common cause of human disease. Disease due to this organism begins with colonization of the upper respiratory mucosa, a process facilitated by adhesive fibers called pili. In the present study, we investigated the structure and assembly of H. influenzae pili. Examination of pili by electron microscopy using quick-freeze, deep-etch and immunogold techniques revealed the presence of two distinct subassemblies, including a flexible two-stranded helical rod comprised of HifA and a short, thin, distal tip structure containing HifD. Genetic and biochemical studies demonstrated that the biogenesis of H. influenzae pili is dependent on a periplasmic chaperone called HifB, which belongs to the PapD family of immunoglobulin-like chaperones. HifB bound directly to HifA and HifD, forming HifB-HifA and HifB-HifD complexes, which were purified from periplasmic extracts by ion-exchange chromatography. Continued investigation of the biogenesis of H. influenzae pili should provide general insights into organelle development and may suggest novel strategies for disease prevention.
Resumo:
Ocular albinism type 1 (OA1) is an inherited disorder characterized by severe reduction of visual acuity, photophobia, and retinal hypopigmentation. Ultrastructural examination of skin melanocytes and of the retinal pigment epithelium reveals the presence of macromelanosomes, suggesting a defect in melanosome biogenesis. The gene responsible for OA1 is exclusively expressed in pigment cells and encodes a predicted protein of 404 aa displaying several putative transmembrane domains and sharing no similarities with previously identified molecules. Using polyclonal antibodies we have identified the endogenous OA1 protein in retinal pigment epithelial cells, in normal human melanocytes and in various melanoma cell lines. Two forms of the OA1 protein were identified by Western analysis, a 60-kDa glycoprotein and a doublet of 48 and 45 kDa probably corresponding to unglycosylated precursor polypeptides. Upon subcellular fractionation and phase separation with the nonionic detergent Triton X-114, the OA1 protein segregated into the melanosome-rich fraction and behaved as an authentic integral membrane protein. Immunofluorescence and immunogold analyses on normal human melanocytes confirmed the melanosomal membrane localization of the endogenous OA1 protein, consistent with its possible involvement in melanosome biogenesis. The identification of a novel melanosomal membrane protein involved in a human disease will provide insights into the mechanisms that control the cell-specific pathways of subcellular morphogenesis.
Resumo:
The accelerated protein accumulation characteristic of cardiomyocyte hypertrophy results from increased cellular protein synthetic capacity (elevated ribosome content). The rate limiting step in ribosome accumulation is transcription of the rRNA genes. During neonatal cardiomyocyte hypertrophy induced by norepinephrine or spontaneous contraction, changes in the expression of a ribosomal DNA transcription factor, UBF, correlated with increased rates of ribosome biogenesis. We hypothesized that elevated expression of UBF was part of the mechanism by which these hypertrophic stimuli effected increases in the rate of transcription from the rDNA promoter. In this study, we have examined directly the effect of overexpressing UBF on rDNA transcription in neonatal cardiomyocytes in culture. In control experiments, a novel reporter construct for rDNA transcription (pSMECAT) showed similar increases in activity in response to hypertrophic stimuli (10(-4) M phenylephrine, 10(-7) M endothelin, and spontaneous contraction) as did the endogenous rRNA genes. When contraction-arrested cardiomyocytes were cotransfected with pSMECAT and increasing amounts of a UBF1 expression vector; a dose-dependent (3-5 fold) increase in rDNA transcription was observed. Western blot analysis confirmed that the overexpressed, FLAG-tagged UBF accumulated in the cardiomyocyte nuclei. The observation that overexpression of UBF1 is sufficient to increase rDNA transcription in neonatal cardiomyocytes provides evidence in support of the hypothesis that the regulation of UBF is a key component of the increased ribosome biogenesis and protein accumulation associated with cardiomyocyte hypertrophy.
Resumo:
Giardia lamblia, like most human intestinal parasitic protozoa, sustains fundamental morphological and biochemical changes to survive outside the small intestine of its mammalian host by differentiating into an infective cyst. However, the stimulus that triggers this differentiation remains totally undefined. In this work, we demonstrate the induction of cyst formation in vitro when trophozoites are starved for cholesterol. Expression of cyst wall proteins was detected within encystation-specific secretory vesicles 90 min after the cells were placed in lipoprotein-deficient TYI-S-33 medium. Four cloned lines derived from two independent Giardia isolates were tested, and all formed cysts similarly. Addition of cholesterol, low density or very low density lipoproteins to the lipoprotein-deficient culture medium, inhibited the expression of cyst wall proteins, the generation of encystation-specific vesicles, and cyst wall biogenesis. In contrast, high density lipoproteins, phospholipids, bile salts, or fatty acids had little or no effect. These results indicate that cholesterol starvation is necessary and sufficient for the stimulation of Giardia encystation in vitro and, likely, in the intestine of mammalian hosts.
Resumo:
Adrenoleukodystrophy (ALD), a severe demyelinating disease, is caused by mutations in a gene coding for a peroxisomal membrane protein (ALDP), which belongs to the superfamily of ATP binding cassette (ABC) transporters and has the structure of a half transporter. ALDP showed 38% sequence identity with another peroxisomal membrane protein, PMP70, up to now its closest homologue. We describe here the cloning and characterization of a mouse ALD-related gene (ALDR), which codes for a protein with 66% identity with ALDP and shares the same half transporter structure. The ALDR protein was overexpressed in COS cells and was found to be associated with the peroxisomes. The ALD and ALDR genes show overlapping but clearly distinct expression patterns in mouse and may thus play similar but nonequivalent roles. The ALDR gene, which appears highly conserved in man, is a candidate for being a modifier gene that could account for some of the extreme phenotypic variability of ALD. The ALDR gene is also a candidate for being implicated in one of the complementation groups of Zellweger syndrome, a genetically heterogeneous disorder of peroxisome biogenesis, rare cases of which were found to be associated with mutations in the PMP70 (PXMP1) gene.
Resumo:
Caveolae are plasma membrane invaginations, which have been implicated in endothelial transcytosis, endocytosis, potocytosis, and signal transduction. In addition to their well-defined morphology, caveolae are characterized by the presence of an integral membrane protein termed VIP21-caveolin. We have recently observed that lymphocytes have no detectable VIP21-caveolin and lack plasma membrane invaginations resembling caveolae. Here we transiently express VIP21-caveolin in a lymphocyte cell line using the Semliki Forest virus expression system and show de novo formation of plasma membrane invaginations containing VIP21-caveolin. These invaginations appear homogeneous in size and morphologically indistinguishable from caveolae of nonlymphoid cells. Moreover, the glycosylphosphatidylinositol-anchored protein. Thy1, patched by antibodies, redistributes to the newly formed caveolae. Our results show that VIP21-caveolin is a key structural component required for caveolar biogenesis.
Resumo:
The Gram-negative bacterial pathogen Neisseria gonorrhoeae is naturally competent for transformation with species-related DNA. We show here that two phase-variable pilus-associated proteins, the major pilus subunit (pilin, or PilE) and PilC, a factor known to function in the assembly and adherence of gonococcal pili, are essential for transformation competence. The PilE and PilC proteins are necessary for the conversion of linearized plasmid DNA carrying the Neisseria-specific DNA uptake signal into a DNase-resistant form. The biogenesis of typical pilus fibers is neither essential nor sufficient for this process. DNA uptake deficiency of defined piliated pilC1,2 double mutants can be complemented by expression of a cloned pilC2 gene in trans. The PilC defect can also be restored by the addition of purified PilC protein, or better, pili containing PilC protein, to the mutant gonococci. Our data suggest that the two phase-variable Pil proteins act on the bacterial cell surface and cooperate in DNA recognition and/or outer membrane translocation.
Resumo:
We have previously shown that protein phosphorylation plays an important role in the sorting and assembly of tight junctions. We have now examined in detail the role of protein kinases in intercellular junction biogenesis by using a combination of highly specific and broad-spectrum inhibitors that act by independent mechanisms. Our data indicate that protein kinase C (PKC) is required for the proper assembly of tight junctions. Low concentrations of the specific inhibitor of PKC, calphostin C, markedly inhibited development of transepithelial electrical resistance, a functional measure of tight-junction biogenesis. The effect of PKC inhibitors on the development of tight junctions, as measured by resistance, was paralleled by a delay in the sorting of the tight-junction protein, zona occludens 1 (ZO-1), to the tight junction. The assembly of desmosomes and the adherens junction were not detectably affected, as determined by immunocytochemical analysis. In addition, ZO-1 was phosphorylated subsequent to the initiation of cell-cell contact, and treatment with calphostin C prevented approximately 85% of the phosphorylation increase. Furthermore, in vitro measurements indicate that ZO-1 may be a direct target of PKC. Moreover, membrane-associated PKC activity more than doubled during junction assembly, and immunocytochemical analysis revealed a pool of PKC zeta that appeared to colocalize with ZO-1 at the tight junction. A preformed complex containing ZO-1, ZO-2, p130, as well as 330- and 65-kDa phosphoproteins was detected by coimmunoprecipitation in both the presence and absence of cell-cell contact. Identity of the 330- and 65-kDa phosphoproteins remains to be determined, but the 65-kDa protein may be occludin. The mass of this complex and the incorporation of ZO-1 into the Triton X-100-insoluble cytoskeleton were not PKC dependent.
Resumo:
Structural evidence has accumulated suggesting that fusion and/or translocation factors are involved in plastid membrane biogenesis. To test this hypothesis, we have developed an in vitro system in which the extent of fusion and/or translocation is monitored by the conversion of the xanthophyll epoxide (antheraxanthin) into the red ketocarotenoid (capsanthin). Only chromoplast membrane vesicles from red pepper fruits (Capsicum annuum) contain the required enzyme. Vesicles prepared from the mutant yellow cultivar are devoid of this enzyme and accumulate antheraxanthin. The fusion and/or translocation activity is characterized by complementation due to the synthesis of capsanthin and the parallel decrease of antheraxanthin when the two types of vesicles are incubated together in the presence of plastid stroma. We show that the extent of conversion is dependent upon an ATP-requiring protein that is sensitive to N-ethylmaleimide. Further purification and immunological analysis have revealed that the active factor, designated plastid fusion and/or translocation factor (Pftf), resides in a protein of 72 kDa. cDNA cloning revealed that mature Pftf has significant homology to yeast and animal (NSF) or bacterial (Ftsh) proteins involved in vesicle fusion or membrane protein translocation.