50 resultados para 5 beta
Resumo:
Keratins, the constituents of epithelial intermediate filaments, are precisely regulated in a tissue- and development-specific manner, although little is known about the molecular mechanisms underlying this regulation. The expression pattern of keratin 6 is particularly complex, since besides being constitutively expressed in hair follicles and in suprabasal cells of a variety of internal stratified epithelia, it is induced in epidermis in both natural and artificially caused hyperproliferative situations. Therefore, the regulatory sequences controlling keratin 6 gene activity are particularly suitable for target gene expression in a tissue-specific manner. More interestingly, they can be skin-induced in transgenic animals or in gene therapy protocols, particularly those addressing epidermal hyperproliferative disorders. To delimit the regions containing these regulatory elements, different parts of the bovine keratin 6 gene linked to a beta-galactosidase reporter gene have been assayed in transgenic mice. A 9-kbp fragment from the 5' upstream region was able to provide both suprabasal tissue-specific and inducible reporter expression.
Resumo:
A detailed structure-function analysis of human interleukin 5 (hIL5) has been performed. The hIL5 receptor is composed of two different polypeptide chains, the alpha and beta subunits. The alpha subunit alone is sufficient for ligand binding, but association with the beta subunit leads to a 2- to 3-fold increase in binding affinity. The beta chain is shared with the receptors for IL3 and granulocyte/macrophage-colony-stimulating factor--hence the descriptor beta C (C for common). All hIL5 mutants were analyzed in a solid-phase binding assay for hIL5R alpha interaction and in a proliferation assay using IL5-dependent cell lines for receptor-complex activation. Most residues affecting binding to the receptor alpha subunit were clustered in a loop connecting beta-strand 1 and helix B (mutants H38A, K39A, and H41A), in beta-strand 2 (E89A and R91A; weaker effect for E90A) and close to the C terminus (T109A, E110A, W111S, and I112A). Mutations at one position, E13 (Glu13), caused a reduced activation of the hIL5 receptor complex. In the case of E13Q, only 0.05% bioactivity was detected on a hIL5-responsive subclone of the mouse promyelocytic cell line FDC-P1. Moreover, on hIL5-responsive TF1 cells, the same mutant was completely inactive and proved to have antagonistic properties. Interactions of this mutant with both receptor subunits were nevertheless indistinguishable from those of nonmutated hIL5 by crosslinking and Scatchard plot analysis of transfected COS-1 cells.
Resumo:
Intraperitoneal injection of epidermal growth factor into mice results in the appearance of multiple tyrosine-phosphorylated proteins in liver nuclei within minutes after administration. We have previously identified three of these proteins as Stat 1 alpha, Stat 1 beta (p91, p84), and Stat 3 (p89). In the present report we demonstrate that Stat 5 (p92), the recently described prolactin inducible transcription factor detected in mammary glands, is the major tyrosine-phosphorylated protein translocated to the nucleus in mouse liver in response to epidermal growth factor. Furthermore, gel-shift analysis and affinity purification revealed that Stat 5, Stat 1 alpha, and Stat 1 beta specifically bind to the prolactin inducible element upstream of the beta-casein promoter.
Resumo:
Prolyl 4-hydroxylase (EC 1.14.11.2) catalyzes the posttranslational formation of 4-hydroxyproline in collagens. The vertebrate enzyme is an alpha 2 beta 2 tetramer, the beta subunit of which is a highly unusual multifunctional polypeptide, being identical to protein disulfide-isomerase (EC 5.3.4.1). We report here the cloning of a second mouse alpha subunit isoform, termed the alpha (II) subunit. This polypeptide consists of 518 aa and a signal peptide of 19 aa. The processed polypeptide is one residue longer than the mouse alpha (I) subunit (the previously known type), the cloning of which is also reported here. The overall amino acid sequence identity between the mouse alpha (II) and alpha (I) subunits is 63%. The mRNA for the alpha (II) subunit was found to be expressed in a variety of mouse tissues. When the alpha (II) subunit was expressed together with the human protein disulfide-isomerase/beta subunit in insect cells by baculovirus vectors, an active prolyl 4-hydroxylase was formed, and this protein appeared to be an alpha (II) 2 beta 2 tetramer. The activity of this enzyme was very similar to that of the human alpha (I) 2 beta 2 tetramer, and most of its catalytic properties were also highly similar, but it differed distinctly from the latter in that it was inhibited by poly(L-proline) only at very high concentrations. This property may explain why the type II enzyme was not recognized earlier, as an early step in the standard purification procedure for prolyl 4-hydroxylase is affinity chromatography on a poly(L-proline) column.
Resumo:
The TCR is an alpha beta heterodimer, a part of the multimeric structure through which physiological T-cell activation occurs. The expression of TCR alpha chain is greatly diminished in a beta-chain-deficient mutant Jurkat cell line (J.RT3-T3.5). The relationship between the expression of the TCR alpha and beta chains has been examined by stable transfection of a series of TCR beta-chain mutant constructs into this mutant cell line. The level of alpha-chain transcript was dramatically upregulated by the expression of the beta chain and specifically by a transcript of the beta-chain variable region alone, including a transcript in which the ATG start codon was mutated. The downregulation of the endogenous alpha-chain transcripts in mutants cells lacking complete beta-chain transcripts occurred primarily at the posttranscriptional level. This evidence for a regulatory function of the TCR beta-chain gene represents an unusual regulatory pathway in which the transcript of one gene is required for the optimal expression of another gene.