78 resultados para tomato leafminer.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flower and fruit development in tomato (Lycopersicon esculentum Mill.) were severely affected when plants were grown at low temperatures, displaying homeotic and meristic transformations and alterations in the fusion pattern of the organs. Most of these homeotic transformations modified the identity of stamens and carpels, giving rise to intermediate organs. Complete homeotic transformations were rarely found and always affected organs of the reproductive whorls. Meristic transformations were also commonly observed in the reproductive whorls, which developed with an excessive number of organs. Scanning electron microscopy revealed that meristic transformations take place very early in the development of the flower and are related to a significant increase in the floral meristem size. However, homeotic transformations should occur later during the development of the organ primordia. Steady-state levels of transcripts corresponding to tomato MADS-box genes TM4, TM5, TM6, and TAG1 were greatly increased by low temperatures and could be related to these flower abnormalities. Moreover, in situ hybridization analyses showed that low temperatures also altered the stage-specific expression of TM4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum Miller) fruit discs fed with [2,3-14C]1-aminocyclopropane-1-carboxylic acid (ACC) formed 1-malonyl-ACC (MACC) as the major conjugate of ACC in fruit throughout all ripening stages, from immature-green through the red-ripe stage. Another conjugate of ACC, γ-glutamyl-ACC (GACC), was formed only in mature-green fruit in an amount about 10% of that of MACC; conjugation of ACC into GACC was not detected in fruits at other ripening stages. No GACC formation was observed from etiolated mung bean (Vigna radiata [L.] Wilczek) hypocotyls, etiolated common vetch (Vicia sativum L.) epicotyls, or pea (Pisum sativum L.) root tips, etiolated epicotyls, and green stem tissue, where active conversion of ACC into MACC was observed. GACC was, however, formed in vitro in extracts from fruit of all ripening stages. GACC formation in an extract from red fruit at pH 7.15 was only about 3% of that at pH 8.0, the pH at which most assays were run. Our present in vivo data support the previous contention that MACC is the major conjugate of ACC in plant tissues, whereas GACC is a minor, if any, conjugate of ACC. Thus, our data do not support the proposal that GACC formation could be more important than MACC formation in tomato fruit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polygalacturonase (PG) is the major enzyme responsible for pectin disassembly in ripening fruit. Despite extensive research on the factors regulating PG gene expression in fruit, there is conflicting evidence regarding the role of ethylene in mediating its expression. Transgenic tomato (Lycopersicon esculentum) fruits in which endogenous ethylene production was suppressed by the expression of an antisense 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene were used to re-examine the role of ethylene in regulating the accumulation of PG mRNA, enzyme activity, and protein during fruit ripening. Treatment of transgenic antisense ACC synthase mature green fruit with ethylene at concentrations as low as 0.1 to 1 μL/L for 24 h induced PG mRNA accumulation, and this accumulation was higher at concentrations of ethylene up to 100 μL/L. Neither PG enzyme activity nor PG protein accumulated during this 24-h period of ethylene treatment, indicating that translation lags at least 24 h behind the accumulation of PG mRNA, even at high ethylene concentrations. When examined at concentrations of 10 μL/L, PG mRNA accumulated within 6 h of ethylene treatment, indicating that the PG gene responds rapidly to ethylene. Treatment of transgenic tomato fruit with a low level of ethylene (0.1 μL/L) for up to 6 d induced levels of PG mRNA, enzyme activity, and protein after 6 d, which were comparable to levels observed in ripening wild-type fruit. A similar level of internal ethylene (0.15 μL/L) was measured in transgenic antisense ACC synthase fruit that were held for 28 d after harvest. In these fruit PG mRNA, enzyme activity, and protein were detected. Collectively, these results suggest that PG mRNA accumulation is ethylene regulated, and that the low threshold levels of ethylene required to promote PG mRNA accumulation may be exceeded, even in transgenic antisense ACC synthase tomato fruit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intracellular location of ADP-glucose pyrophosphorylase (AGP) in developing pericarp of tomato (Lycopersicon esculentum Mill) has been investigated by immunolocalization. With the use of a highly specific anti-tomato fruit AGP antibody, the enzyme was localized in cytoplasm as well as plastids at both the light and electron microscope levels. The immunogold particles in plastids were localized in the stroma and at the surface of the starch granule, whereas those in the cytoplasm occurred in cluster-like patterns. Contrary to the fruit, the labeling in tomato leaf cells occurred exclusively in the chloroplasts. These data demonstrate that AGP is localized to both the cytoplasm and plastids in developing pericarp cells of tomato.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus is a major nutrient acquired by roots via high-affinity inorganic phosphate (Pi) transporters. In this paper, we describe the tissue-specific regulation of tomato (Lycopersicon esculentum L.) Pi-transporter genes by Pi. The encoded peptides of the LePT1 and LePT2 genes belong to a family of 12 membrane-spanning domain proteins and show a high degree of sequence identity to known high-affinity Pi transporters. Both genes are highly expressed in roots, although there is some expression of LePT1 in leaves. Their expression is markedly induced by Pi starvation but not by starvation of nitrogen, potassium, or iron. The transcripts are primarily localized in root epidermis under Pi starvation. Accumulation of LePT1 message was also observed in palisade parenchyma cells of Pi-starved leaves. Our data suggest that the epidermally localized Pi transporters may play a significant role in acquiring the nutrient under natural conditions. Divided root-system studies support the hypothesis that signal(s) for the Pi-starvation response may arise internally because of the changes in cellular concentration of phosphorus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been proposed that cloned plant disease resistance genes could be transferred from resistant to susceptible plant species to control important crop plant diseases. The recently cloned N gene of tobacco confers resistance to the viral pathogen, tobacco mosaic virus. We generated transgenic tomato plants bearing the N gene and demonstrate that N confers a hypersensitive response and effectively localizes tobacco mosaic virus to sites of inoculation in transgenic tomato, as it does in tobacco. The ability to reconstruct the N-mediated resistance response to tobacco mosaic virus in tomato demonstrates the utility of using isolated resistance genes to protect crop plants from diseases, and it demonstrates that all the components necessary for N-mediated resistance are conserved in tomato.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Root hairs as specialized epidermal cells represent part of the outermost interface between a plant and its soil environment. They make up to 70% of the root surface and, therefore, are likely to contribute significantly to nutrient uptake. To study uptake systems for mineral nitrogen, three genes homologous to Arabidopsis nitrate and ammonium transporters (AtNrt1 and AtAmt1) were isolated from a root hair-specific tomato cDNA library. Accumulation of LeNrt1-1, LeNrt1-2, and LeAmt1 transcripts was root-specific, with no detectable transcripts in stems or leaves. Expression was root cell type-specific and regulated by nitrogen availability. LeNrt1-2 mRNA accumulation was restricted to root hairs that had been exposed to nitrate. In contrast, LeNrt1-1 transcripts were detected in root hairs as well as other root tissues under all nitrogen treatments applied. Analogous to LeNrt1-1, the gene LeAmt1 was expressed under all nitrogen conditions tested, and root hair-specific mRNA accumulation was highest following exposure to ammonium. Expression of LeAMT1 in an ammonium uptake-deficient yeast strain restored growth on low ammonium medium, confirming its involvement in ammonium transport. Root hair specificity and characteristics of substrate regulation suggest an important role of the three genes in uptake of mineral nitrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 69-kDa proteinase (P69), a member of the pathogenesis-related proteins, is induced and accumulates in tomato (Lycopersicon esculentum) plants as a consequence of pathogen attack. We have used the polymerase chain reaction to identify and clone a cDNA from tomato plants that represent the pathogenesis-related P69 proteinase. The nucleotide sequence analysis revealed that P69 is synthesized in a preproenzyme form, a 745-amino acid polypeptide with a 22-amino acid signal peptide, a 92-amino acid propolypeptide, and a 631-amino acid mature polypeptide. Within the mature region the most salient feature was the presence of domains homologous to the subtilisin serine protease family. The amino acid sequences surrounding Asp-146, His-203, and Ser-532 of P69 are closely related to the catalytic sites (catalytic triad) of the subtilisin-like proteases. Northern blot analysis revealed that the 2.4-kb P69 mRNA accumulates abundantly in leaves and stem tissues from viroid-infected plants, whereas the mRNA levels in tissues from healthy plants were undetectable. Our results indicate that P69, a secreted calcium-activated endopeptidase, is a plant pathogenesis-related subtilisin-like proteinase that may collaborate with other defensive proteins in a general mechanism of active defense against attacking pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rep protein of geminiviruses is the sole viral protein required for their DNA replication. The amino acid sequence of Rep protein contains an NTP binding consensus motif (P-loop). Here we show that purified Rep protein of tomato yellow leaf curl virus expressed in Escherichia coli exhibits an ATPase activity in vitro. Amino acid exchanges in the P-loop sequence of Rep causes a substantial decrease or loss of the ATPase activity. In vivo, mutant viruses carrying these Rep mutations do not replicate in plant cells. These results show that ATP binding by the Rep protein of geminiviruses is required for its function in viral DNA replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical and physical signals have been reported to mediate wound-induced proteinase inhibitor II (Pin2) gene expression in tomato and potato plants. Among the chemical signals, phytohormones such as abscisic acid (ABA) and jasmonic acid (JA) and the peptide systemin represent the best characterized systems. Furthermore, electrical and hydraulic mechanisms have also been postulated as putative Pin2-inducing systemic signals. Most of the chemical agents are able to induce Pin2 gene expression without any mechanical wounding. Thus, ABA, JA, and systemin initiate Pin2 mRNA accumulation in the directly treated leaves and in the nontreated leaves (systemic) that are located distal to the treated ones. ABA-deficient tomato and potato plants do not respond to wounding by accumulation of Pin2 mRNA, therefore providing a suitable model system for analysis of the signal transduction pathway involved in wound-induced gene activation. It was demonstrated that the site of action of JA is located downstream to the site of action of ABA. Moreover, systemin represents one of the initial steps in the signal transduction pathway regulating the wound response. Recently, it was reported that heat treatment and mechanical injury generate electrical signals, which propagate throughout the plant. These signals are capable of inducing Pin2 gene expression in the nontreated leaves of wounded plants. Furthermore, electrical current application to tomato leaves leads to an accumulation of Pin2 mRNA in local and systemic tissues. Examination of photosynthetic parameters (assimilation and transpiration rate) on several types of stimuli suggests that heat-induced Pin2 gene expression is regulated by an alternative pathway from that mediating the electrical current and mechanical wound response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Replication of the single-stranded DNA genome of geminiviruses occurs via a double-stranded intermediate that is subsequently used as a template for rolling-circle replication of the viral strand. Only one of the proteins encoded by the virus, here referred to as replication initiator protein (Rep protein), is indispensable for replication. We show that the Rep protein of tomato yellow leaf curl virus initiates viral-strand DNA synthesis by introducing a nick in the plus strand within the nonanucleotide 1TAATATT decreases 8AC, identical among all geminiviruses. After cleavage, the Rep protein remains bound to the 5' end of the cleaved strand. In addition, we show that the Rep protein has a joining activity, suggesting that it acts as a terminase, thus resolving the nascent viral single strand into genome-sized units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accumulation of phenylalanine-derived phenolic compounds is a well-known element of a plant's defense in response to pathogen attack. Phenylalanine, as well as the other two aromatic amino acids, tyrosine and tryptophan, is synthesized by way of the shikimate pathway. The first seven steps of the shikimate pathway (the prechorismate pathway) are common for the biosynthesis of all three aromatic amino acids. We have studied transcript levels of six genes--i.e., two 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase genes, one shikimate kinase gene, one 5-enolpyruvylshikimate 3-phosphate synthase gene, and two chorismate synthase genes--corresponding to four steps of the prechorismate pathway, in cultured tomato cells exposed to fungal elicitors. The abundance of transcripts specific for some of these genes increased 10- to 20-fold within 6 h after elicitor treatment, as did the abundance of phenylalanine ammonialyase-specific transcripts and the synthesis of ethylene. Interestingly, transcript accumulation occurred more rapidly for shikimate kinase than for the enzymes preceding or following it in the prechorismate pathway. Neither the inhibition of ethylene biosynthesis by aminoethoxyvinylglycine nor inhibition of phenylalanine ammonia-lyase (EC 4.3.1.5) activity by 2-aminoindan-2-phosphonic acid affected the time course or extent of transcript accumulation. Thus, the increased demand for phenylalanine in the phenylpropanoid pathway required after elicitor treatment appears to be met by increased de novo synthesis of its biosynthetic enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A colonization mutant of the efficient root-colonizing biocontrol strain Pseudomonas fluorescens WCS365 is described that is impaired in competitive root-tip colonization of gnotobiotically grown potato, radish, wheat, and tomato, indicating a broad host range mutation. The colonization of the mutant is also impaired when studied in potting soil, suggesting that the defective gene also plays a role under more natural conditions. A DNA fragment that is able to complement the mutation for colonization revealed a multicistronic transcription unit composed of at least six ORFs with similarity to lppL, lysA, dapF, orf235/233, xerC/sss, and the largely incomplete orf238. The transposon insertion in PCL1233 appeared to be present in the orf235/233 homologue, designated orf240. Introduction of a mutation in the xerC/sss homologue revealed that the xerC/sss gene homologue rather than orf240 is crucial for colonization. xerC in Escherichia coli and sss in Pseudomonas aeruginosa encode proteins that belong to the λ integrase family of site-specific recombinases, which play a role in phase variation caused by DNA rearrangements. The function of the xerC/sss homologue in colonization is discussed in terms of genetic rearrangements involved in the generation of different phenotypes, thereby allowing a bacterial population to occupy various habitats. Mutant PCL1233 is assumed to be locked in a phenotype that is not well suited to compete for colonization in the rhizosphere. Thus we show the importance of phase variation in microbe–plant interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prosystemin is the 200-amino acid precursor of the 18-amino acid polypeptide defense hormone, systemin. Herein, we report that prosystemin was found to be as biologically active as systemin when assayed for proteinase inhibitor induction in young tomato plants and nearly as active in the alkalinization response in Lycopersicon esculentum suspension-cultured cells. Similar to many animal prohormones that harbor multiple signals, the systemin precursor contains five imperfect repetitive domains N-terminal to a single systemin domain. Whether the five repetitive domains contain defense signals has not been established. N-terminal deletions of prosystemin had little effect on its activity in tomato plants or suspension-cultured cells. Deletion of the C-terminal region of prosystemin containing the 18-amino acid systemin domain completely abolished its proteinase inhibitor induction and alkalinization activities. The apoplastic fluid from tomato leaves and the medium of cultured cells were analyzed for proteolytic activity that could process prosystemin to systemin. These experiments showed that proteolytic enzymes present in the apoplasm and medium could cleave prosystemin into large fragments, but the enzymes did not produce detectable levels of systemin. Additionally, inhibitors of these proteolytic enzymes did not affect the biological activity of prosystemin. The cumulative data indicated that prosystemin and/or large fragments of prosystemin can be active inducers of defense responses in both tomato leaves and suspension-cultured cells and that the only region of prosystemin that is responsible for activating the defense response resides in the systemin domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we describe the in vitro reconstitution of photosystem I light-harvesting complexes with pigments and proteins (Lhca1 and Lhca4) obtained by overexpression of tomato Lhca genes in Escherichia coli. Using Lhca1 and Lhca4 individually for reconstitution results in monomeric pigment-proteins, whereas a combination thereof yields a dimeric complex. Interactions of the apoproteins is highly specific, as reconstitution of either of the two constituent proteins in combination with a light-harvesting protein of photosystem II does not result in dimerization. The reconstituted Lhca1/4, but not complexes obtained with either Lhca1 or Lhca4 alone, closely resembles the native LHCI-730 dimer from tomato leaves with regard to spectroscopic properties, pigment composition, and stoichiometry. Monomeric complexes of Lhca1 or Lhca4 possess lower pigment/protein ratios, indicating that interactions of the two subunits not only facilitates pigment reorganization but also recruitment of additional pigments. In addition to higher averages of chlorophyll a/b ratios in monomeric complexes than in LHCI-730, comparative fluorescence and CD spectra demonstrate that heterodimerization involves preferential ligation of more chlorophyll b.