39 resultados para tetramer
Resumo:
The most frequent form of inherited amyloidoses is associated with mutations in the transthyretin (TTR) gene coding for 127-amino acid residues of four identical, noncovalently linked subunits that form a pair of dimers in the plasma protein complex. Amyloid fibrils containing the variant and to a lesser extent the wild-type form of the TTR molecule are deposited in various organs, including peripheral nerves and the myocardium, with polyneuropathy and cardiomyopathy as major clinical manifestations. So far, more than 40 distinct amino acid substitutions distributed throughout the TTR sequence over 30 positions have been found to be correlated with an increased amyloidogenicity of TTR. Most of these amyloidogenic amino acid substitutions are suspected to alter the conformation and stability of the monomer. Here we identify and characterize by protein and DNA analysis a novel amyloidogenic Val-20 to Ile mutation in a German three-generation family. The index patient suffered from severe amyloid cardiomyopathy at the age of 60. Conformational stability and unfolding behavior of the Ile-20 monomer in urea gradients was found to be almost indistinguishable from that of wild-type TTR. In contrast, tetramer stability was significantly reduced in agreement with the expected change in the interactions between the two opposing dimers via the side chain of Ile-20. Our observations provide strong evidence for the view that amyloidogenic amino acid substitutions in TTR facilitate the conversion of tetrameric TTR complexes into those conformational intermediates of the TTR folding pathway that have an intrinsic amyloidogenic potential.
Resumo:
Hybridization experiments between normal Hb tetramers (Fe2+ Hb) and those with four metal-substituted hemes (i.e., replacement of Fe2+ by Co2+, Mg2+, Mn2+, Mn3+, Ni2+, or Zn2+) have revealed unexpected behavior. These homometallic Hbs have previously served as models that mimic the deoxy or oxy properties of normal Fe2+ Hb. In this study, hybrids were composed of one alpha 1 beta 1 dimer that is metal-substituted at both hemes, in association with a second dimer alpha 2 beta 2 that has normal Fe2+ hemes. Both metal-substituted subunits are unligated, whereas the two Fe2+ subunits either are both unligated or both ligated with O2, CO, or CN. It was found that four of the metal-substituted Hbs (Mg2+ Hb, Mn2+ Hb, Ni2+ Hb, and Zn2+ Hb) did not form detectable amounts of heterometallic hybrids with normal Fe2+ Hb even though (i) their homometallic parents formed tight tetrameric complexes with stabilities similar to that of Fe2+ Hb and (ii) hybrids with metal substitution at both alpha sites or both beta sites are known to form readily. This striking positional effect was independent of whether the normal Fe2+ hemes were ligated and of which ligand was used. These findings indicate that surprisingly large changes in tetramer behavior can arise from small and subtle perturbations at the heme sites. Possible origins of these effects are considered.
Resumo:
The double sex gene (dsx) encodes two proteins, DSX(M) and DSX(F), that regulate sex-specific transcription in Drosophila. These proteins bind target sites in DNA from which the male-specific DSX(M) represses and the female-specific DSX(F) activates transcription of yolk protein (Yp) genes. We investigated the physical properties of these DSX proteins, which are identical in their amino-terminal 397 residues but are entirely different in their carboxyl-terminal sequences (DSX(F), 30 amino acids; DSX(M), 152 amino acids). DSX(M) and DSX(F) were overexpressed in cultured insect cells and purified to near homogeneity. Gel filtration chromatography and glycerol gradient sedimentation showed that at low concentrations both proteins are dimers of highly asymmetrical shape. The axial ratios are approximately 18:1 (DSX(M), 860 X 48 angstroms; DSX(F), 735 X 43 angstroms). At higher concentrations, the proteins form tetramers. Through use of a novel, double crosslinking assay (protein-DNA plus protein-protein), we demonstrated that a DNA regulatory site binds to both monomers of the DSX dimer and to only two monomers of the tetramer. Furthermore, binding another DNA molecule to what we presume is the second and identical site in the tetramer dramatically shifts the equilibrium from tetramers to dimers. These oligomerization and DNA binding properties are indistinguishable between the male and female proteins.
Mapping nucleosome position at single base-pair resolution by using site-directed hydroxyl radicals.
Resumo:
A base-pair resolution method for determining nucleosome position in vitro has been developed to com- plement existing, less accurate methods. Cysteaminyl EDTA was tethered to a recombinant histone octamer via a mutant histone H4 with serine 47 replaced by cysteine. When assembled into nucleosome core particles, the DNA could be cut site specifically by hydroxyl radical-catalyzed chain scission by using the Fenton reaction. Strand cleavage occurs mainly at a single nucleotide close to the dyad axis of the core particle, and assignment of this location via the symmetry of the nucleosome allows base-pair resolution mapping of the histone octamer position on the DNA. The positions of the histone octamer and H3H4 tetramer were mapped on a 146-bp Lytechinus variegatus 5S rRNA sequence and a twofold-symmetric derivative. The weakness of translational determinants of nucleosome positioning relative to the overall affinity of the histone proteins for this DNA is clearly demonstrated. The predominant location of both histone octamer and H3H4 tetramer assembled on the 5S rDNA is off center. Shifting the nucleosome core particle position along DNA within a conserved rotational phase could be induced under physiologically relevant conditions. Since nucleosome shifting has important consequences for chromatin structure and gene regulation, an approach to the thermodynamic characterization of this movement is proposed. This mapping method is potentially adaptable for determining nucleosome position in chromatin in vivo.
Resumo:
A tetramer of the Mu transposase (MuA) pairs the recombination sites, cleaves the donor DNA, and joins these ends to a target DNA by strand transfer. Juxtaposition of the recombination sites is accomplished by the assembly of a stable synaptic complex of MuA protein and Mu DNA. This initial critical step is facilitated by the transient binding of the N-terminal domain of MuA to an enhancer DNA element within the Mu genome (called the internal activation sequence, IAS). Recently we solved the three-dimensional solution structure of the enhancer-binding domain of Mu phage transposase (residues 1-76, MuA76) and proposed a model for its interaction with the IAS element. Site-directed mutagenesis coupled with an in vitro transposition assay has been used to assess the validity of the model. We have identified five residues on the surface of MuA that are crucial for stable synaptic complex formation but dispensable for subsequent events in transposition. These mutations are located in the loop (wing) structure and recognition helix of the MuA76 domain of the transposase and do not seriously perturb the structure of the domain. Furthermore, in order to understand the dynamic behavior of the MuA76 domain prior to stable synaptic complex formation, we have measured heteronuclear 15N relaxation rates for the unbound MuA76 domain. In the DNA free state the backbone atoms of the helix-turn-helix motif are generally immobilized whereas the residues in the wing are highly flexible on the pico- to nanosecond time scale. Together these studies define the surface of MuA required for enhancement of transposition in vitro and suggest that a flexible loop in the MuA protein required for DNA recognition may become structurally ordered only upon DNA binding.
Resumo:
Autonomously replicating sequence (ARS) elements of the fission yeast Schizosaccharomyces pombe contain multiple imperfect copies of the consensus sequence reported by Maundrell et al. [Maundrell K., Hutchison, A. & Shall, S. (1988) EMBO J. 7, 2203-2209]. When cell free extracts of S. pombe were incubated with a dimer or tetramer of an oligonucleotide containing the ARS consensus sequence, several complexes were detected using a gel mobility-shift assay. The proteins forming these complexes also bind ars3002, which is the most active origin in the ura4 region of chromosome III of S. pombe. One protein, partly responsible for the binding activity observed with crude extracts, was purified to near homogeneity. It is a 60-kDa protein and was named ARS-binding protein 1 (Abp1). Abp1 preferentially binds to multiple sites in ARS 3002 and to the DNA polymer poly[d(A.T)]. The cloning and sequence of the gene coding for Abp1 revealed that it encodes a protein of 59.8 kDa (522 amino acids). Abp1 has significant homology (25% identity, 50% similarity) to the N-terminal region (approximately 300 amino acids) of the human and mouse centromere DNA-binding protein CENP-B. Because centromeres of S. pombe contain a high density of ARS elements, Abp1 may play a role connecting DNA replication and chromosome segregation.
Resumo:
The characterization of 4a-carbinolamine dehydratase with the enzymatically synthesized natural substrate revealed non-Michaelis-Menten kinetics. A Hill coefficient of 1.8 indicates that the dehydratase exists as a multisubunit enzyme that shows cooperativity. A mild form of hyperphenylalaninemia with high 7-biopterin levels has been linked to mutations in the human 4a-carbinolamine dehydratase gene. We have now cloned and expressed two mutant forms of the protein based on a patient's DNA sequences. The kinetic parameters of the mutant C82R reveal a 60% decrease in Vmax but no change in Km (approximately 5 microM), suggesting that the cysteine residue is not involved in substrate binding. Its replacement by arginine possibly causes a conformational change in the active center. Like the wild-type enzyme, this mutant is heat stable and forms a tetramer. The susceptibility to proteolysis of C82R, however, is markedly increased in vitro compared with the wild-type protein. We have also observed a decrease in the expression levels of C82R protein in transfected mammalian cells, which could be due to proteolytic instability. The 18-amino acid-truncated mutant GLu-87--> termination could not be completely purified and characterized due to minute levels of expression and its extremely low solubility as a fusion protein. No dehydratase activity was detected in crude extracts from transformed bacteria or transfected mammalian cells. Considering the decrease in specific activity and stability of the mutants, we conclude that the patient probably has less than 10% residual dehydratase activity, which could be responsible for the mild hyperphenylalaninemia and the high 7-biopterin levels.
Resumo:
Protein-protein interactions allow the retinoid X receptor (RXR) to bind to cognate DNA as a homo- or a heterodimer and to participate in mediating the effects of a variety of hormones on gene transcription. Here we report a systematic study of the oligomeric state of RXR in the absence of a DNA template. We have used electrophoresis under nondenaturing conditions and chemical crosslinking to show that in solution, RXR alpha forms homodimers as well as homotetramers. The dissociation constants governing dimer and tetramer formation were estimated by fluorescence anisotropy studies. The results indicate that RXR tetramers are formed with a high affinity and that at protein concentrations higher than about 70 nM, tetramers will constitute the predominant species. Tetramer formation may provide an additional level of the regulation of gene transcription mediated by RXRs.
Resumo:
Progress in homology modeling and protein design has generated considerable interest in methods for predicting side-chain packing in the hydrophobic cores of proteins. Present techniques are not practically useful, however, because they are unable to model protein main-chain flexibility. Parameterization of backbone motions may represent a general and efficient method to incorporate backbone relaxation into such fixed main-chain models. To test this notion, we introduce a method for treating explicitly the backbone motions of alpha-helical bundles based on an algebraic parameterization proposed by Francis Crick in 1953 [Crick, F. H. C. (1953) Acta Crystallogr. 6, 685-689]. Given only the core amino acid sequence, a simple calculation can rapidly reproduce the crystallographic main-chain and core side-chain structures of three coiled coils (one dimer, one trimer, and one tetramer) to within 0.6-A root-mean-square deviations. The speed of the predictive method [approximately 3 min per rotamer choice on a Silicon Graphics (Mountain View, CA) 4D/35 computer] permits it to be used as a design tool.