33 resultados para systemic acquired response
Resumo:
Immunization of mice with rat type II collagen (CII), a cartilage-specific protein, leads to development of collagen-induced arthritis (CIA), a model for rheumatoid arthritis. To define the interaction between the immune system and cartilage, we produced two sets of transgenic mice. In the first we point mutated the mouse CII gene to express an earlier defined T-cell epitope, CII-(256-270), present in rat CII. In the second we mutated the mouse type I collagen gene to express the same T-cell epitope. The mice with mutated type I collagen showed no T-cell reactivity to rat CII and were resistant to CIA. Thus, the CII-(256-270) epitope is immunodominant and critical for development of CIA. In contrast, the mice with mutated CII had an intact B-cell response and had T cells which could produce gamma interferon, but not proliferate, in response to CII. They developed CIA, albeit with a reduced incidence. Thus, we conclude that T cells recognize CII derived from endogenous cartilage and are partially tolerized but may still be capable of mediating CIA.
Resumo:
Although the origin of autoimmune antibodies to double-stranded DNA is not known, the variable-region structures of such antibodies indicate that they are produced in response to antigen-selective stimulation. In accordance with this, results from experiments using artificial complexes of DNA and DNA-binding polypeptides for immunizations have indicated that DNA may induce these antibodies. Hence, the immunogenicity of DNA in vivo may depend upon other structures or processes that may render DNA immunogenic. We report that in vivo expression of a single DNA-binding protein, the polyoma virus T antigen, is sufficient to initiate production of anti-double-stranded DNA and anti-histone antibodies but not a panel of other autoantigens. Expression of a mutant, non-DNA-binding T antigen did result in strong production of antibodies to the T antigen, but only borderline levels of antibodies to DNA and no detectable antibodies to histones. Nonexpressing plasmid DNA containing the complete cDNA sequence for T antigen did not evoke such immune responses, indicating that DNA by itself is not immunogenic in vivo. The results represent a conceptual advance in understanding a potential molecular basis for initiation of autoimmunity in systemic lupus erythematosus.
Resumo:
Infection of mucosal epithelium by papillomaviruses is responsible for the induction of genital and oral warts and plays a critical role in the development of human cervical and oropharyngeal cancer. We have employed a canine model to develop a systemic vaccine that completely protects against experimentally induced oral mucosal papillomas. The major capsid protein, L1, of canine oral papillomavirus (COPV) was expressed in Sf9 insect cells in native conformation. L1 protein, which self-assembled into virus-like particles, was purified on CsCl gradients and injected intradermally into the foot pad of beagles. Vaccinated animals developed circulating antibodies against COPV and became completely resistant to experimental challenge with COPV. Successful immunization was strictly dependent upon native L1 protein conformation and L1 type. Partial protection was achieved with as little as 0.125 ng of L1 protein, and adjuvants appeared useful for prolonging the host immune response. Serum immunoglobulins passively transferred from COPV L1-immunized beagles to naive beagles conferred protection from experimental infection with COPV. Our results indicate the feasibility of developing a human vaccine to prevent mucosal papillomas, which can progress to malignancy.