41 resultados para parasite marker
Resumo:
Genetic studies of the protozoan parasite Plasmodium falciparum have been severely limited by the inability to introduce or modify genes. In this paper we describe a system of stable transfection of P. falciparum using a Toxoplasma gondii dihydrofolate reductase-thymidylate synthase gene, modified to confer resistance to pyrimethamine, as a selectable marker. This gene was placed under the transcriptional control of the P. falciparum calmodulin gene flanking sequences. Transfected parasites generally maintained plasmids episomally while under selection; however, parasite clones containing integrated forms of the plasmid were obtained. Integration occurred by both homologous and nonhomologous recombination. In addition to the flanking sequence of the P. falciparum calmodulin gene, the 5' sequences of the P. falciparum and P. chabaudi dihydrofolate reductase-thymidylate synthase genes were also shown to be transcriptionally active in P. falciparum. The minimal 5' sequence that possessed significant transcriptional activity was determined for each gene and short sequences containing important transcriptional control elements were identified. These sequences will provide considerable flexibility in the future construction of plasmid vectors to be used for the expression of foreign genes or for the deletion or modification of P. falciparum genes of interest.
Resumo:
We used the common fish pathogen Ichthyophthirius multifiliis as a model for studying interactions between parasitic ciliates and their vertebrate hosts. Although highly pathogenic, Ichthyophthirius can elicit a strong protective immune response in fish after exposure to controlled infections. To investigate the mechanisms underlying host resistance, a series of passive immunization experiments were carried out using mouse monoclonal antibodies against a class of surface membrane proteins, known as immobilization antigens (or i-antigens), thought to play a role in the protective response. Such antibodies bind to cilia and immobilize I. multifiliis in vitro. Surprisingly, we found that passive antibody transfer in vivo caused rapid exit of parasites from the host. The effect was highly specific for a given I. multifiliis serotype. F(ab)2 subfragments had the same effect as intact antibody, whereas monovalent Fab fragments failed to protect. The activity of Fab could, nevertheless, be restored after subsequent i.p. injection of bivalent goat anti-mouse IgG. Parasites that exit the host had detectable antibody on their surface and appeared viable in all respects. These findings represent a novel instance among protists in which protective immunity (and evasion of the host response) result from an effect of antibody on parasite behavior.
Resumo:
The association between human immunodeficiency virus type I (HIV-1) RNA load changes and the emergence of resistant virus variants was investigated in 24 HIV-1-infected asymptomatic persons during 2 years of treatment with zidovudine by sequentially measuring serum HIV-1 RNA load and the relative amounts of HIV-1 RNA containing mutations at reverse transcriptase (RT) codons 70 (K-->R), 41 (M-->L), and 215 (T-->Y/F). A mean maximum decline in RNA load occurred during the first month, followed by a resurgence between 1 and 3 months, which appeared independent of drug-resistance. Mathematical modeling suggests that this resurgence is caused by host-parasite dynamics, and thus reflects infection of the transiently increased numbers of CD4+ lymphocytes. Between 3 and 6 months of treatment, the RNA load returned to baseline values, which was associated with the emergence of virus containing a single lysine to arginine amino acid change at RT codon 70, only conferring an 8-fold reduction in susceptibility. Despite the relative loss of RNA load suppression, selection toward mutations at RT codons 215 and 41 continued. Identical patterns were observed in the mathematical model. While host-parasite dynamics and outgrowth of low-level resistant virus thus appear responsible for the loss of HIV-1 RNA load suppression, zidovudine continues to select for alternative mutations, conferring increasing levels of resistance.
Resumo:
Estrogen is a known risk factor in human breast cancer. In rodent models, estradiol has been shown to induce tumors in those tissues in which this hormone is predominantly converted to the catechol metabolite 4-hydroxyestradiol by a specific 4-hydroxylase enzyme, whereas tumors fail to develop in organs in which 2-hydroxylation predominates. We have now found that microsomes prepared from human mammary adenocarcinoma and fibroadenoma predominantly catalyze the metabolic 4-hydroxylation of estradiol (ratios of 4-hydroxyestradiol/2-hydroxyestradiol formation in adenocarcinoma and fibroadenoma, 3.8 and 3.7, respectively). In contrast, microsomes from normal tissue obtained either from breast cancer patients or from reduction mammoplasty operations expressed comparable estradiol 2- and 4-hydroxylase activities (corresponding ratios, 1.3 and 0.7, respectively). An elevated ratio of 4-/2-hydroxyestradiol formation in neoplastic mammary tissue may therefore provide a useful marker of benign or malignant breast tumors and may indicate a mechanistic role of 4-hydroxyestradiol in tumor development.
Resumo:
Testicular germ cell tumors are the most common form of cancer in young adult males. They result from a derangement of primordial germ cells, and they grow out from a noninvasive carcinoma-in-situ precursor. Since carcinoma in situ can readily be cured by low-dose irradiation, there is a great incentive for non- or minimally invasive methods for detection of carcinoma in situ. We have recently shown that human Tera-2 embryonal carcinoma cells, obtained from a nonseminomatous testicular germ cell tumor, show alternative splicing and alternative promoter use of the platelet-derived growth factor alpha-receptor gene, giving rise to a unique 1.5-kb transcript. In this study we have set up a reverse transcriptase-polymerase chain reaction strategy for characterization of the various transcripts for this receptor. Using this technique, we show that a panel of 18 seminomas and II nonseminomatous testicular germ cell tumors all express the 1.5-kb transcript. In addition, a panel of 27 samples of testis parenchyma with established carcinoma in situ were all found to be positive for the 1.5-kb transcript, while parenchyma lacking carcinoma in situ, placenta, and control semen were all negative. These data show that the 1.5-kb platelet-derived growth factor alpha-receptor transcript can be used as a highly selective marker for detection of early stages of human testicular germ cell tumors.
Resumo:
Hamilton and Zuk [Hamilton, W. D. & Zuk, M. (1982) Science 218, 384-387] proposed that females choosing mates based on the degree of expression of male characters obtain heritable parasite resistance for their offspring. Alternatively, the "contagion indicator" hypothesis posits that females choose mates based on the degree of expression of male characters because the latter indicate a male's degree of infestation of parasites and thus the risk that choosing females and their offspring will acquire these parasites. I examined whether parasite transmittability affects the probability that parasite intensity and male mating success are negatively correlated in intraspecific studies of parasite-mediated sexual selection. When females risk infection of themselves or their future offspring as a result of mating with a parasitized male, negative relationships between parasite intensity and male mating success are significantly more likely to occur than when females do not risk such infection. The direct benefit to females of avoiding parasitic infection is proposed to lead to the linkage between variable secondary sexual characters and the intensity of transmittable parasites. The direct benefits of avoiding associatively transmittable parasites should be considered in future studies of parasite-mediated sexual selection.
Resumo:
The multicellular obligately photoautotrophic alga Volvox is composed of only two types of cells, somatic and reproductive. Therefore, Volvox provides the simplest model system for the study of multicellularity. Metabolic labeling experiments using radioactive precursors are crucial for the detection of stage- and cell-type-specific proteins, glycoproteins, lipids, and carbohydrates. However, wild-type Volvox lacks import systems for sugars or amino acids. To circumvent this problem, the hexose/H+ symporter (HUP1) gene from the unicellular alga Chlorella was placed under the control of the constitutive Volvox beta-tubulin promoter. The corresponding transgenic Volvox strain synthesized the sugar transporter in a functional state and was able to efficiently incorporate 14C from labeled glucose or glucosamine. Sensitivity toward the toxic glucose/mannose analogue 2-deoxy-glucose increased by orders of magnitude in transformants. Thus we report the successful transformation of Volvox with a gene of heterologous origin. The chimeric gene may be selected for in either a positive or a negative manner, because transformants exhibit both prolonged survival in the dark in the presence of glucose and greatly increased sensitivity to the toxic sugar 2-deoxyglucose. The former trait may make the gene useful as a dominant selectable marker for use in transformation studies, whereas the latter trait may make it useful in development of a gene-targeting system.
Resumo:
Representational difference analysis was used to identify strain-specific differences in the pseudoautosomal region (PAR) of mouse X and Y chromosomes. One second generation (C57BL/6 x Mus spretus) x Mus spretus interspecific backcross male carrying the C57BL/6 (B6) PAR was used for tester DNA. DNA from five backcross males from the same generation that were M. spretus-type for the PAR was pooled for the driver. A cloned probe designated B6-38 was recovered that is B6-specific in Southern analysis. Analysis of genomic DNA from several inbred strains of laboratory mice and diverse Mus species and subspecies identified a characteristic Pst I pattern of fragment sizes that is present only in the C57BL family of strains. Hybridization was observed with sequences in DBA/2J and to a limited extent with Mus musculus (PWK strain) and Mus castaneus DNA. No hybridization was observed in DNA of different Mus species, M. spretus, M. hortulanus, and M. caroli. Genetic analyses of B6-38 was conducted using C57BL congenic males that carry M. spretus alleles for distal X chromosome loci and the PAR and outcrosses of heterozygous congenic females with M. spretus. These analyses demonstrated that the B6-38 sequences were inherited with both the X and Y chromosome. B6-38 sequences were genetically mapped as a locus within the PAR using two interspecific backcrosses. The locus defined by B6-38 is designated DXYRp1. Preliminary analyses of recombination between the distal X chromosome gene amelogenin (Amg) and the PAR loci for either TelXY or sex chromosome association (Sxa) suggest that the locus DXYRp1 maps to the distal portion of the PAR.
Resumo:
Fecally dispersed parasites of 12 wild mammal species in Mudumalai Sanctuary, southern India, were studied. Fecal propagule densities and parasite diversity measures were correlated with host ecological variables. Host species with higher predatory pressure had lower parasite loads and parasite diversity. Host body weight, home range, population density, gregariousness, and diet did not show predicted effects on parasite loads. Measures of alpha diversity were positively correlated with parasite abundance and were negatively correlated with beta diversity. Based on these data, hypotheses regarding determinants of parasite community are discussed.
Resumo:
Mutant mice produced by gene targeting in embryonic stem (ES) cells often have a complex or embryonic lethal phenotype. In these cases, it would be helpful to identify tissues and cell types first affected in mutant embryos by following the contribution to chimeras of ES cells homozygous for the mutant allele. Although a number of strategies for following ES cell development in vivo have been reported, each has limitations that preclude its general application. In this paper, we describe ES cell lines that can be tracked to every nucleated cell type in chimeras at all developmental stages. These lines were derived from blastocysts of mice that carry an 11-Mb beta-globin transgene on chromosome 3. The transgene is readily detected by DNA in situ hybridization, providing an inert, nuclear-localized marker whose presence is not affected by transcriptional or translational controls. The "WW" series of ES lines possess the essential features of previously described ES lines, including giving rise to a preponderance of male chimeras, all of which have to date exhibited germ-line transmission. In addition, clones selected for single or double targeting events form strong chimeras, demonstrating the feasibility of using WW6 cells to identify phenotypes associated with the creation of a null mutant.
Resumo:
We have used the green fluorescent protein (GFP) from the jellyfish Aequorea victoria as a vital marker/reporter in Drosophila melanogaster. Transgenic flies were generated in which GFP was expressed under the transcriptional control of the yeast upstream activating sequence that is recognized by GAL4. These flies were crossed to several GAL4 enhancer trap lines, and expression of GFP was monitored in a variety of tissues during development using confocal microscopy. Here, we show that GFP could be detected in freshly dissected ovaries, imaginal discs, and the larval nervous system without prior fixation or the addition of substrates or antibodies. We also show that expression of GFP could be monitored in intact living embryos and larvae and in cultured egg chambers, allowing us to visualize dynamic changes in gene expression during real time.