37 resultados para p-Bromophenacyl bromide inhibitor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ataxia-telangiectasia (AT) is an autosomal recessive human genetic disease characterized by immunological, neurological, and developmental defects and an increased risk of cancer. Cells from individuals with AT show sensitivity to ionizing radiation, elevated recombination, cell cycle abnormalities, and aberrant cytoskeletal organization. The molecular basis of the defect is unknown. A candidate AT gene (ATDC) was isolated on the basis of its ability to complement the ionizing radiation sensitivity of AT group D fibroblasts. Whether ATDC is mutated in any AT patients is not known. We have found that the ATDC protein physically interacts with the intermediate-filament protein vimentin, which is a protein kinase C substrate and colocalizing protein, and with an inhibitor of protein kinase C, hPKCI-1. Indirect immunofluorescence analysis of cultured cells transfected with a plasmid encoding an epitope-tagged ATDC protein localizes the protein to vimentin filaments. We suggest that the ATDC and hPKCI-1 proteins may be components of a signal transduction pathway that is induced by ionizing radiation and mediated by protein kinase C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human hookworm infection is a major cause of gastrointestinal blood loss and iron deficiency anemia, affecting up to one billion people in the developing world. These soil-transmitted helminths cause blood loss during attachment to the intestinal mucosa by lacerating capillaries and ingesting extravasated blood. We have isolated the major anticoagulant used by adult worms to facilitate feeding and exacerbate intestinal blood loss. This 8.7-kDa peptide, named the Ancylostoma caninum anticoagulant peptide (AcAP), was purified by using a combination of ion-exchange chromatography, gel-filtration chromatography, and reverse-phase HPLC. N-terminal sequencing of AcAP reveals no homology to any previously identified anticoagulant or protease inhibitor. Single-stage chromogenic assays reveal that AcAP is a highly potent and specific inhibitor of human coagulation, with an intrinsic K*i for the inhibition of free factor Xa of 323.5 pM. In plasma-based clotting time assays, AcAP was more effective at prolonging the prothrombin time than both recombinant hirudin and tick anticoagulant peptide. These data suggest that AcAP, a specific inhibitor of factor Xa, is one of the most potent naturally occurring anticoagulants described to date.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of cell cycle withdrawal during terminal differentiation is poorly understood. We report here that the cyclin-dependent kinase (CDK) inhibitor p21Cip1/WAF1 is induced at early times of both keratinocyte and myoblast differentiation. p21Cip1/WAF1 induction is accompanied by a drastic inhibition of total Cdk2, as well as p21Cip1/WAF1-associated CDK kinase activities. p21Cip1/WAF1 has been implicated in p53-mediated G1 arrest and apoptosis. In keratinocyte differentiation, Cip1/WAF1 induction is observed even in cells derived from p53-null mice. Similarly, keratinocyte differentiation is associated with induction of Cip1/WAF1 promoter activity in both wild-type and p53-negative keratinocytes. Induction of the Cip1/WAF1 promoter upon differentiation is abolished by expression of an adenovirus E1A oncoprotein (d1922/947), which is unable to bind p105-Rb, p107, or cyclin A but which still binds the nuclear phosphoprotein p300. Overexpression of p300 can suppress the E1A effect, independent of its direct binding to E1A. Thus, terminal differentiation-induced growth arrest in both keratinocyte and myoblast systems is associated with induction of Cip1/WAF1 expression. During keratinocyte differentiation, Cip1/WAF1 induction does not require p53 but depends on the transcriptional modulator p300.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viruses such as human immunodeficiency virus (HIV) require cellular activation for expression. Cellular activation in lymphoid cells is associated with augmented accumulation of certain phosphatidic acid (PA) species derived from the hydrolysis of glycan phosphatidylinositol (GPI). This suggests that activation of a phospholipid pathway may play a role in initiation of viral replication. To test this hypothesis, we examined the effect of tat gene expression on the production of cellular PA species, as the Tat protein is essential for HIV expression and has been implicated in activating the expression of multiple host cellular genes. Expression of tat increased the expression of PA. We then tested whether synthetic inhibitors of PA metabolism would inhibit activation of the HIV long terminal repeat by Tat and tumor necrosis factor alpha (TNF-alpha). CT-2576 suppressed both PA generation induced by Tat and HIV long terminal repeat-directed gene expression in response to Tat or TNF-alpha at a posttranscriptional step. CT-2576 also inhibited constitutive as well as TNF-alpha- and interleukin 6-induced expression of HIV p24 antigen in chronically infected U1 cells and in peripheral blood lymphocytes acutely infected with a clinical isolate of HIV. Pharmacological inhibition of synthesis of selected PA species may therefore provide a therapeutic approach to suppression of HIV replication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extracellular deposition of amyloid fibrils is responsible for the pathology in the systemic amyloidoses and probably also in Alzheimer disease [Haass, C. & Selkoe, D. J. (1993) Cell 75, 1039-1042] and type II diabetes mellitus [Lorenzo, A., Razzaboni, B., Weir, G. C. & Yankner, B. A. (1994) Nature (London) 368, 756-760]. The fibrils themselves are relatively resistant to proteolysis in vitro but amyloid deposits do regress in vivo, usually with clinical benefit, if new amyloid fibril formation can be halted. Serum amyloid P component (SAP) binds to all types of amyloid fibrils and is a universal constituent of amyloid deposits, including the plaques, amorphous amyloid beta protein deposits and neurofibrillary tangles of Alzheimer disease [Coria, F., Castano, E., Prelli, F., Larrondo-Lillo, M., van Duinen, S., Shelanski, M. L. & Frangione, B. (1988) Lab. Invest. 58, 454-458; Duong, T., Pommier, E. C. & Scheibel, A. B. (1989) Acta Neuropathol. 78, 429-437]. Here we show that SAP prevents proteolysis of the amyloid fibrils of Alzheimer disease, of systemic amyloid A amyloidosis and of systemic monoclonal light chain amyloidosis and may thereby contribute to their persistence in vivo. SAP is not an enzyme inhibitor and is protective only when bound to the fibrils. Interference with binding of SAP to amyloid fibrils in vivo is thus an attractive therapeutic objective, achievement of which should promote regression of the deposits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental allergic encephalomyelitis (EAE) is an autoimmune disease of the central nervous system that serves as a model for the human disease multiple sclerosis. We evaluated rolipram, a type IV phosphodiesterase inhibitor, for its efficacy in preventing EAE in the common marmoset Callithrix jacchus. In a blinded experimental design, clinical signs of EAE developed within 17 days of immunization with human white matter in two placebo-treated animals but in none of three monkeys that received rolipram (10 mg/kg s.c. every other day) beginning 1 week after immunization. In controls, signs of EAE were associated with development of cerebrospinal fluid pleocytosis and cerebral MRI abnormalities. In the treatment group, there was sustained protection from clinical EAE, transient cerebrospinal fluid pleocytosis in only one of three animals, no MRI abnormality, and marked reduction in histopathologic findings. Rolipram-treated and control animals equally developed circulating antibodies to myelin basic protein. Thus, inhibition of type IV phosphodiesterase, initiated after sensitization to central nervous system antigens, protected against autoimmune demyelinating disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Examination of the structural basis for antiviral activity, oral pharmacokinetics, and hepatic metabolism among a series of symmetry-based inhibitors of the human immunodeficiency virus (HIV) protease led to the discovery of ABT-538, a promising experimental drug for the therapeutic intervention in acquired immunodeficiency syndrome (AIDS). ABT-538 exhibited potent in vitro activity against laboratory and clinical strains of HIV-1 [50% effective concentration (EC50) = 0.022-0.13 microM] and HIV-2 (EC50 = 0.16 microM). Following a single 10-mg/kg oral dose, plasma concentrations in rat, dog, and monkey exceeded the in vitro antiviral EC50 for > 12 h. In human trials, a single 400-mg dose of ABT-538 displayed a prolonged absorption profile and achieved a peak plasma concentration in excess of 5 micrograms/ml. These findings demonstrate that high oral bioavailability can be achieved in humans with peptidomimetic inhibitors of HIV protease.