49 resultados para murine model
Resumo:
In the present study, the cardioprotective effects of insulin-like growth factor I (IGF-I) were examined in a murine model of myocardial ischemia reperfusion (i.e., 20 min + 24 hr). IGF-I (1-10 micrograms per rat) administered 1 hr prior to ischemia significantly attenuated myocardial injury (i.e., creatine kinase loss) compared to vehicle (P < 0.001). In addition, cardiac myeloperoxidase activity, an index of neutrophil accumulation, in the ischemic area was significantly attenuated by IGF-I (P < 0.001). This protective effect of IGF-I was not observed with des-(1-3)-IGF-I. Immunohistochemical analysis of ischemic-reperfused myocardial tissue demonstrated markedly increased DNA fragmentation due to programmed cell death (i.e., apoptosis) compared to nonischemic myocardium. Furthermore, IGF-I significantly attenuated the incidence of myocyte apoptosis after myocardial ischemia and reperfusion. Therefore, IGF-I appears to be an effective agent for preserving ischemic myocardium from reperfusion injury and protects via two different mechanisms--inhibition of polymorphonuclear leukocyte-induced cardiac necrosis and inhibition of reperfusion-induced apoptosis of cardiac myocytes.
Resumo:
Helicobacter pylori is an important etiologic agent of gastroduodenal disease. In common with other organisms, H. pylori bacteria express heat shock proteins that share homologies with the GroES-GroEL class of proteins from Escherichia coli. We have assessed the heat shock proteins of H. pylori as potential protective antigens in a murine model of gastric Helicobacter infection. Orogastric immunization of mice with recombinant H. pylori GroES- and GroEL-like proteins protected 80% (n = 20) and 70% (n = 10) of animals, respectively, from a challenge dose of 10(4) Helicobacter felis bacteria (compared to control mice, P = 0.0042 and P = 0.0904, respectively). All mice (n = 19) that were immunized with a dual antigen preparation, consisting of H. pylori GroES-like protein and the B subunit of H. pylori urease, were protected against infection. This represented a level of protection equivalent to that provided by a sonicated Helicobacter extract (P = 0.955). Antibodies directed against the recombinant H. pylori antigens were predominantly of the IgG1 class, suggesting that a type 2 T-helper cell response was involved in protection. This work reports a protein belonging to the GroES class of heat shock proteins that was shown to induce protective immunity. In conclusion, GroES-like and urease B-subunit proteins have been identified as potential components of a future H. pylori subunit vaccine.
Resumo:
The existence of immunoregulatory genes conferring dominant resistance to autoimmunity is well documented. In an effort to better understand the nature and mechanisms of action of these genes, we utilized the murine model of autoimmune orchitis as a prototype. When the orchitis-resistant strain DBA/2J is crossed with the orchitis-susceptible strain BALB/cByJ, the F1 hybrid is completely resistant to the disease. By using reciprocal radiation bone marrow chimeras, the functional component mediating this resistance was mapped to the bone marrow-derived compartment. Resistance is not a function of either low-dose irradiation- or cyclophosphamide (20 mg/kg)-sensitive immunoregulatory cells, but can be adoptively transferred by primed splenocytes. Genome exclusion mapping identified three loci controlling the resistant phenotype. Orch3 maps to chromosome 11, whereas Orch4 and Orch5 map to the telomeric and centromeric regions of chromosome 1, respectively. All three genes are linked to a number of immunologically relevant candidate loci. Most significant, however, is the linkage of Orch3 to Idd4 and Orch5 to Idd5, two susceptibility genes which play a role in autoimmune insulin-dependent type 1 diabetes mellitus in the nonobese diabetic mouse.
Resumo:
We report here that a cancer gene therapy protocol using a combination of IL-12, pro-IL-18, and IL-1β converting enzyme (ICE) cDNA expression vectors simultaneously delivered via gene gun can significantly augment antitumor effects, evidently by generating increased levels of bioactive IL-18 and consequently IFN-γ. First, we compared the levels of IFN-γ secreted by mouse splenocytes stimulated with tumor cells transfected with various test genes, including IL-12 alone; pro-IL-18 alone; pro-IL-18 and ICE; IL-12 and pro-IL-18; and IL-12, pro-IL-18, and ICE. Among these treatments, the combination of IL-12, pro-IL-18, and ICE cDNA resulted in the highest level of IFN-γ production from splenocytes in vitro, and similar results were obtained when these same treatments were delivered to the skin of a mouse by gene gun and IFN-γ levels were measured at the skin transfection site in vivo. Furthermore, the triple gene combinatorial gene therapy protocol was the most effective among all tested groups at suppressing the growth of TS/A (murine mammary adenocarcinoma) tumors previously implanted intradermally at the skin site receiving DNA transfer by gene gun on days 6, 8, 10, and 12 after tumor implantation. Fifty percent of mice treated with the combined three-gene protocol underwent complete tumor regression. In vivo depletion experiments showed that this antitumor effect was CD8+ T cell-mediated and partially IFN-γ-dependent. These results suggest that a combinatorial gene therapy protocol using a mixture of IL-12, pro-IL-18, and ICE cDNAs can confer potent antitumor activities against established TS/A tumors via cytotoxic CD8+ T cells and IFN-γ-dependent pathways.
Resumo:
Neural degeneration is one of the clinical manifestations of ataxia–telangiectasia, a disorder caused by mutations in the Atm protein kinase gene. However, neural degeneration was not detected with general purpose light microscopic methods in previous studies using several different lines of mice with disrupted Atm genes. Here, we show electron microscopic evidence of degeneration of several different types of neurons in the cerebellar cortex of 2-month-old Atm knockout mice, which is accompanied by glial activation, deterioration of neuropil structure, and both pre- and postsynaptic degeneration. These findings are similar to those in patients with ataxia–telangiectasia, indicating that Atm knockout mice are a useful model to elucidate the mechanisms underlying neurodegeneration in this condition and to develop and test strategies to palliate and prevent the disease.
Resumo:
Rodent tumor cells engineered to secrete cytokines such as interleukin 2 (IL-2) or IL-4 are rejected by syngeneic recipients due to an enhanced antitumor host immune response. An adenovirus vector (AdCAIL-2) containing the human IL-2 gene has been constructed and shown to direct secretion of high levels of human IL-2 in infected tumor cells. AdCAIL-2 induces regression of tumors in a transgenic mouse model of mammary adenocarcinoma following intratumoral injection. Elimination of existing tumors in this way results in immunity against a second challenge with tumor cells. These findings suggest that adenovirus vectors expressing cytokines may form the basis for highly effective immunotherapies of human cancers.
Resumo:
To investigate the role of complement protein factor B (Bf) and alternative pathway activity in vivo, and to test the hypothesized potential genetic lethal effect of Bf deficiency, the murine Bf gene was interrupted by exchange of exon 3 through exon 7 (including the factor D cleaving site) with the neor gene. Mice heterozygous for the targeted Bf allele were interbred, yielding Bf-deficient offspring after the F1 generation at a frequency suggesting that Bf deficiency alone has no major effect on fertility or fetal development. However, in the context of one or more genes derived from the 129 mouse strain, offspring homozygous for Bf deficiency were generated at less than expected numbers (P = 0.012). Bf-deficient mice showed no gross phenotypic difference from wild-type littermates. Sera from Bf-deficient mice lacked detectable alternative complement pathway activity; purified mouse Bf overcame the deficit. Classical pathway-dependent total hemolytic activity was lower in Bf-deficient than wild-type mice, possibly reflecting loss of the alternative pathway amplification loop. Lymphoid organ structure and IgG1 antibody response to a T-dependent antigen appeared normal in Bf-deficient mice. Sensitivity to lethal endotoxic shock was not significantly altered in Bf-deficient mice. Thus, deficiency of Bf and alternative complement activation pathway led to a less dramatic phenotype than expected. Nevertheless, these mice provide an excellent model for the assessment of the role of Bf and the alternative pathway in host defense and other functions in vivo.
Resumo:
We have generated a mouse where the clotting factor IX (FIX) gene has been disrupted by homologous recombination. The FIX nullizygous (−/−) mouse was devoid of factor IX antigen in plasma. Consistent with the bleeding disorder, the factor IX coagulant activities for wild-type (+/+), heterozygous (+/−), and homozygous (−/−) mice were 92%, 53%, and <5%, respectively, in activated partial thromboplastin time assays. Plasma factor IX activity in the deficient mice (−/−) was restored by introducing wild-type murine FIX gene via adenoviral vectors. Thus, these factor IX-deficient mice provide a useful animal model for gene therapy studies of hemophilia B.
Resumo:
Antigen-specific effector T cells are prerequisite to immune protection, but because of the lack of effector cell-specific markers, their generation and differentiation has been difficult to study. We report that effector cells are highly enriched in a T cell subset that can be specifically identified in transgenic (T-GFP) mice expressing green fluorescent protein (GFP) under control of the murine CD4 promoter and proximal enhancer. Consistent with previous studies of these transcriptional control elements, GFP was strongly and specifically expressed in nearly all resting and short-term activated CD4+ and CD8+ T cells. However, when T-GFP mice were challenged with vaccinia virus, allogeneic tumor cells, or staphylococcal enterotoxin A, the cytotoxic and IFN-γ-producing T cells lost GFP expression. Upon T cell receptor (TCR) ligation by αCD3, sorted GFP+ cells fluxed calcium and proliferated vigorously. In contrast, GFP− effector cells showed a diminished calcium flux and did not proliferate. Instead, they underwent apoptosis unless supplied with exogenous IL-2. By reverse transcription–PCR analysis, the GFP− cells up-regulated the pro-apoptotic molecule, Fas-L, and down-regulated gene expression of the proximal TCR signaling molecule, CD3ζ, and c-jun, a component of the AP-1 transcription factor. Thus, differential regulation of TCR signaling may explain the divergent responses of naïve and effector T cells to antigen stimulation.
Resumo:
Normally nonmetastatic murine sis-transformed BALB/c 3T3 cells, transfected with human CD44s gene (hCD44s), acquire spontaneous metastatic capacity to the lung. The mechanism(s) of this facilitated micrometastasis was analyzed in an experimental metastasis model. Human CD44s overexpression promoted the earliest stages severalfold (initial implantation and subsequent stabilization of tumor cells) but was irrelevant for later stages (subsequent outgrowth) of lung experimental micrometastasis. By injecting mixed populations of parental (nonmetastatic) and CD44s-transfected cells, it was shown that cell–cell adhesion between tumor and parental cells was not promoted by hCD44s but that promotion of cell–cell adhesion to lung endothelium or specifically between transfected cells (via hyaluronan) are likely mechanisms. Results obtained with hCD44s-negative primary tumor cells and hCD44s-positive or -negative variants of lung micrometastatic cells (after s.c. injection of transfectants) confirmed the importance of CD44s overexpression for early but not late stages of experimental lung metastasis. Therefore, CD44s represents a metastasis-facilitating molecule that is irrelevant for primary tumor outgrowth but that promotes micrometastasis to the lungs at the very earliest stages.
Resumo:
Galactosialidosis (GS) is a human neurodegenerative disease caused by a deficiency of lysosomal protective protein/cathepsin A (PPCA). The GS mouse model resembles the severe human condition, resulting in nephropathy, ataxia, and premature death. To rescue the disease phenotype, GS mice were transplanted with bone marrow from transgenic mice overexpressing human PPCA specifically in monocytes/macrophages under the control of the colony stimulating factor-1 receptor promoter. Transgenic macrophages infiltrated and resided in all organs and expressed PPCA at high levels. Correction occurred in hematopoietic tissues and nonhematopoietic organs, including the central nervous system. PPCA-expressing perivascular and leptomeningeal macrophages were detected throughout the brain of recipient mice, although some neuronal cells, such as Purkinje cells, continued to show storage and died. GS mice crossed into the transgenic background reflected the outcome of bone marrow-transplanted mice, but the course of neuronal degeneration was delayed in this model. These studies present definite evidence that macrophages alone can provide a source of corrective enzyme for visceral organs and may be beneficial for neuronal correction if expression levels are sufficient.
Resumo:
Sickle cell anemia (SCA) and thalassemia are among the most common genetic diseases worldwide. Current approaches to the development of murine models of SCA involve the elimination of functional murine α- and β-globin genes and substitution with human α and βs transgenes. Recently, two groups have produced mice that exclusively express human HbS. The transgenic lines used in these studies were produced by coinjection of human α-, γ-, and β-globin constructs. Thus, all of the transgenes are integrated at a single chromosomal site. Studies in transgenic mice have demonstrated that the normal gene order and spatial organization of the members of the human β-globin gene family are required for appropriate developmental and stage-restricted expression of the genes. As the cis-acting sequences that participate in activation and silencing of the γ- and β-globin genes are not fully defined, murine models that preserve the normal structure of the locus are likely to have significant advantages for validating future therapies for SCA. To produce a model of SCA that recapitulates not only the phenotype, but also the genotype of patients with SCA, we have generated mice that exclusively express HbS after transfer of a 240-kb βs yeast artificial chromosome. These mice have hemolytic anemia, 10% irreversibly sickled cells in their peripheral blood, reticulocytosis, and other phenotypic features of SCA.
Resumo:
In previous studies we showed that 5 days of treatment with granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) mobilized murine repopulating cells to the peripheral blood (PB) and that these cells could be efficiently transduced with retroviral vectors. We also found that, 7-14 days after cytokine treatment, the repopulating ability of murine bone marrow (BM) increased 10-fold. In this study we examined the efficiency of gene transfer into cytokine-primed murine BM cells and extended our observations to a nonhuman primate autologous transplantation model. G-CSF/SCF-primed murine BM cells collected 7-14 days after cytokine treatment were equivalent to post-5-fluorouracil BM or G-CSF/SCF-mobilized PB cells as targets for retroviral gene transfer. In nonhuman primates, CD34-enriched PB cells collected after 5 days of G-CSF/SCF treatment and CD34-enriched BM cells collected 14 days later were superior targets for retroviral gene transfer. When a clinically approved supernatant infection protocol with low-titer vector preparations was used, monkeys had up to 5% of circulating cells containing the vector for up to a year after transplantation. This relatively high level of gene transfer was confirmed by Southern blot analysis. Engraftment after transplantation using primed BM cells was more rapid than that using steady-state bone marrow, and the fraction of BM cells saving the most primitive CD34+/CD38- or CD34+/CD38dim phenotype increased 3-fold. We conclude that cytokine priming with G-CSF/SCF may allow collection of increased numbers of primitive cells from both the PB and BM that have improved susceptibility to retroviral transduction, with many potential applications in hematopoietic stem cell-directed gene therapy.
Resumo:
Voltage-gated Ca2+ channels are categorized as either high-voltage activated (HVA) or low-voltage activated (LVA), and a subtype (or subtypes) of HVA Ca2+ channels link the presynaptic depolarization to rapid neuro-transmitter release. Reductions in transmitter release are characteristic of the autoimmune disorder, Lambert-Eaton syndrome (LES). Because antibodies from LES patients reduce Ca2+ influx in a variety of cell types and disrupt the intramembrane organization of active zones at neuromuscular synapses, specificity of LES antibodies for the Ca2+ channels that control transmitter release has been suggested as the mechanism for disease. We tested sera from four patients with LES. Serum samples from three of the four patients reduced both the maximal LVA and HVA Ca2+ conductances in murine dorsal root ganglion neurons. Thus, even though LES is expressed as a neuromuscular and autonomic disorder, our studies suggest that Ca2+ channels may be broadly affected in LES patients. To account for the specificity of disease expression, we suggest that incapacitation of only a fraction of the Ca2+ channels clustered at active zones would severely depress transmitter release. In particular, if several Ca2+ channels in a cluster are normally required to open simultaneously before transmitter release becomes likely, the loss of a few active zone Ca2+ channels would exponentially reduce the probability of transmitter release. This model may explain why LES is expressed as a neuromuscular disorder and can account for a clinical hallmark of LES, facilitation of neuromuscular transmission produced by vigorous voluntary effort.
Resumo:
Particle-mediated (gene gun) in vivo delivery of the murine interleukin 12 (IL-12) gene in an expression plasmid was evaluated for antitumor activity. Transfer of IL-12 cDNA into epidermal cells overlying an implanted intradermal tumor resulted in detectable levels (266.0 +/- 27.8 pg) of the transgenic protein at the skin tissue treatment site. Despite these low levels of transgenic IL-12, complete regression of established tumors (0.4-0.8 cm in diameter) was achieved in mice bearing Renca, MethA, SA-1, or L5178Y syngeneic tumors. Only one to four treatments with IL-12 cDNA-coated particles, starting on day 7 after tumor cell implantation, were required to achieve complete tumor regression. This antitumor effect was CD8+ T cell-dependent and led to the generation of tumor-specific immunological memory. By using a metastatic P815 tumor model, we further showed that a delivery of IL-12 cDNA into the skin overlying an advanced intradermal tumor, followed by tumor excision and three additional IL-12 gene transfections, could significantly inhibit systemic metastases, resulting in extended survival of test mice. These results suggest that gene gun-mediated in vivo delivery of IL-12 cDNA should be further developed for potential clinical testing as an approach for human cancer gene therapy.