78 resultados para mitochondria kidney


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cDNA for a second mouse mitochondrial carbonic anhydrase (CA) called CA VB was identified by homology to the previously characterized murine CA V, now called CA VA. The full-length cDNA encodes a 317-aa precursor that contains a 33-aa classical mitochondrial leader sequence. Comparison of products expressed from cDNAs for murine CA VB and CA VA in COS cells revealed that both expressed active CAs that localized in mitochondria, and showed comparable activities in crude extracts and in mitochondria isolated from transfected COS cells. Northern blot analyses of total RNAs from mouse tissues and Western blot analyses of mouse tissue homogenates showed differences in tissue-specific expression between CA VB and CA VA. CA VB was readily detected in most tissues, while CA VA expression was limited to liver, skeletal muscle, and kidney. The human orthologue of murine CA VB was recently reported also. Comparison of the CA domain sequence of human CA VB with that reported here shows that the CA domains of CA VB are much more highly conserved between mouse and human (95% identity) than the CA domains of mouse and human CA VAs (78% identity). Analysis of phylogenetic relationships between these and other available human and mouse CA isozyme sequences revealed that mammalian CA VB evolved much more slowly than CA VA, accepting amino acid substitutions at least 4.5 times more slowly since each evolved from its respective human–mouse ancestral gene around 90 million years ago. Both the differences in tissue distribution and the much greater evolutionary constraints on CA VB sequences suggest that CA VB and CA VA have evolved to assume different physiological roles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously have described a mouse model for polycystic kidney disease (PKD) caused by either of two mutations, kat or kat2J, that map to the same locus on chromosome 8. The homozygous mutant animals have a latent onset, slowly progressing form of PKD with renal pathology similar to the human autosomal-dominant PKD. In addition, the mutant animals show pleiotropic effects that include facial dysmorphism, dwarfing, male sterility, anemia, and cystic choroid plexus. We previously fine-mapped the kat2J mutation to a genetic distance of 0.28 ± 0.12 centimorgan between D8Mit128 and D8Mit129. To identify the underlying molecular defect in this locus, we constructed an integrated genetic and physical map of the critical region surrounding the kat2J mutation. Cloning and expression analysis of the transcribed sequences from this region identified Nek1, a NIMA (never in mitosis A)-related kinase as a candidate gene. Further analysis of the Nek1 gene from both kat/kat and kat2J/kat2J mutant animals identified a partial internal deletion and a single-base insertion as the molecular basis for these mutations. The complex pleiotropic phenotypes seen in the homozygous mutant animals suggest that the NEK1 protein participates in different signaling pathways to regulate diverse cellular processes. Our findings identify a previously unsuspected role for Nek1 in the kidney and open a new avenue for studying cystogenesis and identifying possible modes of therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atrial natriuretic peptide (ANP) and nitric oxide (NO) are key regulators of ion and water transport in the kidney. Here, we report that these cGMP-elevating hormones stimulate Ca2+ reabsorption via a novel mechanism specifically involving type II cGMP-dependent protein kinase (cGK II). ANP and the NO donor, sodium nitroprusside (SNP), markedly increased Ca2+ uptake in freshly immunodissected rabbit connecting tubules (CNT) and cortical collecting ducts (CCD). Although readily increasing cGMP, ANP and SNP did not affect Ca2+ and Na+ reabsorption in primary cultures of these segments. Immunoblot analysis demonstrated that cGK II, and not cGK I, was present in freshly isolated CNT and CCD but underwent a complete down-regulation during the primary cell culture. However, upon adenoviral reexpression of cGK II in primary cultures, ANP, SNP, and 8-Br-cGMP readily increased Ca2+ reabsorption. In contrast, no cGMP-dependent effect on electrogenic Na+ transport was observed. The membrane localization of cGK II proved to be crucial for its action, because a nonmyristoylated cGK II mutant that was shown to be localized in the cytosol failed to mediate ANP-stimulated Ca2+ transport. The Ca2+-regulatory function of cGK II appeared isotype-specific because no cGMP-mediated increase in Ca2+ transport was observed after expression of the cytosolic cGK Iβ or a membrane-bound cGK II/Iβ chimer. These results demonstrate that ANP- and NO-stimulated Ca2+ reabsorption requires membrane-targeted cGK II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three cytosolic and one plasma membrane-bound 5′-nucleotidases have been cloned and characterized. Their various substrate specificities suggest widely different functions in nucleotide metabolism. We now describe a 5′-nucleotidase in mitochondria. The enzyme, named dNT-2, dephosphorylates specifically the 5′- and 2′(3′)-phosphates of uracil and thymine deoxyribonucleotides. The cDNA of human dNT-2 codes for a 25.9-kDa polypeptide with a typical mitochondrial leader peptide, providing the structural basis for two-step processing during import into the mitochondrial matrix. The deduced amino acid sequence is 52% identical to that of a recently described cytosolic deoxyribonucleotidase (dNT-1). The two enzymes share many catalytic properties, but dNT-2 shows a narrower substrate specificity. Mitochondrial localization of dNT-2 was demonstrated by the mitochondrial fluorescence of 293 cells expressing a dNT-2-green fluorescent protein (GFP) fusion protein. 293 cells expressing fusion proteins without leader peptide or with dNT-1 showed a cytosolic fluorescence. During in vitro import into mitochondria, the preprotein lost the leader peptide. We suggest that dNT-2 protects mitochondrial DNA replication from overproduction of dTTP, in particular in resting cells. Mitochondrial toxicity of dTTP can be inferred from a severe inborn error of metabolism in which the loss of thymidine phosphorylase led to dTTP accumulation and aberrant mitochondrial DNA replication. We localized the gene for dNT-2 on chromosome 17p11.2 in the Smith–Magenis syndrome-critical region, raising the possibility that dNT-2 is involved in the etiology of this genetic disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In anoxia, mitochondria change from being ATP producers to potentially powerful ATP consumers. This change occurs, because the mitochondrial F1F0-ATPase begins to hydrolyze ATP to avoid the collapse of the proton motive force. Species that can survive prolonged periods of O2 lack must limit such ATP use; otherwise, this process would dominate glycolytic metabolism and threaten ATP delivery to essential ATP-consuming processes of the cell (e.g., ion-motive ATPases). There are two ways to limit ATP hydrolysis by the F1F0-ATPase, namely (i) reduction of the proton conductance of the mitochondrial inner membrane and (ii) inhibition of the enzyme. We assessed these two possibilities by using intact mitochondria isolated from the skeletal muscle of anoxia-tolerant frogs. Our results show that proton conductance is unaltered between normoxia and anoxia. However, ATP use by the F1F0-ATPase is limited in anoxia by a profound inhibition of the enzyme. Even so, ATP use by the F1F0-ATPase might account for ≈9% of the ATP turnover in anoxic frog skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria are confronted with low oxygen levels in the microenvironment within tissues; yet, isolated mitochondria are routinely studied under air-saturated conditions that are effectively hyperoxic, increase oxidative stress, and may impair mitochondrial function. Under hypoxia, on the other hand, respiration and ATP supply are restricted. Under these conditions of oxygen limitation, any compromise in the coupling of oxidative phosphorylation to oxygen consumption could accentuate ATP depletion, leading to metabolic failure. To address this issue, we have developed the approach of oxygen-injection microcalorimetry and ADP-injection respirometry for evaluating mitochondrial function at limiting oxygen supply. Whereas phosphorylation efficiency drops during ADP limitation at high oxygen levels, we show here that oxidative phosphorylation is more efficient at low oxygen than at air saturation, as indicated by higher ratios of ADP flux to total oxygen flux at identical submaximal rates of ATP synthesis. At low oxygen, the proton leak and uncoupled respiration are depressed, thus reducing maintenance energy expenditure. This indicates the importance of low intracellular oxygen levels in avoiding oxidative stress and protecting bioenergetic efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The voltage- and Ca2+-activated K+ (KV,Ca) channel is expressed in a variety of polarized epithelial cells seemingly displaying a tissue-dependent apical-to-basolateral regionalization, as revealed by electrophysiology. Using domain-specific biotinylation and immunofluorescence we show that the human channel KV,Ca α-subunit (human Slowpoke channel, hSlo) is predominantly found in the apical plasma membrane domain of permanently transfected Madin-Darby canine kidney cells. Both the wild-type and a mutant hSlo protein lacking its only potential N-glycosylation site were efficiently transported to the cell surface and concentrated in the apical domain even when they were overexpressed to levels 200- to 300-fold higher than the density of intrinsic Slo channels. Furthermore, tunicamycin treatment did not prevent apical segregation of hSlo, indicating that endogenous glycosylated proteins (e.g., KV,Ca β-subunits) were not required. hSlo seems to display properties for lipid-raft targeting, as judged by its buoyant distribution in sucrose gradients after extraction with either detergent or sodium carbonate. The evidence indicates that the hSlo protein possesses intrinsic information for transport to the apical cell surface through a mechanism that may involve association with lipid rafts and that is independent of glycosylation of the channel itself or an associated protein. Thus, this particular polytopic model protein shows that glycosylation-independent apical pathways exist for endogenous membrane proteins in Madin-Darby canine kidney cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Central to the process of epithelial organogenesis is branching morphogenesis into tubules and ducts. In the kidney, this can be modeled by a very simple system consisting of isolated ureteric bud (UB) cells, which undergo branching morphogenesis in response to soluble factors present in the conditioned medium of a metanephric mesenchyme cell line. By employing a targeted screen to identify transcription factors involved early in the morphogenetic program leading to UB branching, we identified the mammalian ortholog of Timeless (mTim) as a potential immediate early gene (IEG) important in this process. In the embryo, mTim was found to be expressed in patterns very suggestive of a role in epithelial organogenesis with high levels of expression in the developing lung, liver, and kidney, as well as neuroepithelium. In the embryonic kidney, the expression of mTim was maximal in regions of active UB branching, and a shift from the large isoform of mTim to a smaller isoform occurred as the kidney developed. Selective down-regulation of mTim resulted in profound inhibition of embryonic kidney growth and UB morphogenesis in organ culture. A direct effect on the branching UB was supported by the observation that down-regulation of mTim in the isolated UB (cultured in the absence of mesenchyme) resulted in marked inhibition of morphogenesis, suggesting a key role for Tim in the epithelial cell morphogenetic pathway leading to the formation of branching tubules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Farnesyltransferase inhibitors (FTIs) represent a new class of anticancer drugs that show promise in blocking the growth of tumors. Here, we report that FTIs are capable of inducing apoptosis of transformed but not untransformed cells. Treatment of v-K-ras-transformed normal rat kidney (KNRK) cells with FTIs leads to the induction of apoptotic cell morphology, chromatin condensation and DNA fragmentation. In addition, fluorescence-activated cell sorter analysis of FTI-treated KNRK cells shows a sub-G1 apoptotic peak (chromosome content of <2 N). This FTI-induced apoptosis is evident only when the cells are grown in low serum conditions (0.1% fetal calf serum) and is observed selectively with transformed KNRK cells and not with untransformed NRK cells. Further analysis of the mechanism underlying this apoptosis has shown that FTI treatment of KNRK cells results in the activation of caspase 3 but not caspase 1. Moreover, the addition of Z-DEVD-fmk, an agent that interferes with caspase 3 activity, can inhibit FTI-induced apoptosis in a dose-dependent manner. Introduction of the CASP-3 gene into MCF7 cells, which lack caspase 3 activity, results in a significant increase of FTI-induced apoptosis. Furthermore, FTI induces the release of cytochrome c into the cytosol. This release is an important feature of caspase 3-mediated apoptosis. These results suggest that FTIs induce apoptosis through the release of cytochrome c from the mitochondria resulting in caspase 3 activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classically recognized functions of the renin–angiotensin system are mediated by type 1 (AT1) angiotensin receptors. Whereas man possesses a single AT1 receptor, there are two AT1 receptor isoforms in rodents (AT1A and AT1B) that are products of separate genes (Agtr1a and Agtr1b). We have generated mice lacking AT1B (Agtr1b −/−) and both AT1A and AT1B receptors (Agtr1a −/−Agtr1b −/−). Agtr1b −/− mice are healthy, without an abnormal phenotype. In contrast, Agtr1a −/−Agtr1b −/− mice have diminished growth, vascular thickening within the kidney, and atrophy of the inner renal medulla. This phenotype is virtually identical to that seen in angiotensinogen-deficient (Agt−/−) and angiotensin-converting enzyme-deficient (Ace −/−) mice that are unable to synthesize angiotensin II. Agtr1a −/−Agtr1b −/− mice have no systemic pressor response to infusions of angiotensin II, but they respond normally to another vasoconstrictor, epinephrine. Blood pressure is reduced substantially in the Agtr1a −/− Agtr1b −/− mice and following administration of an angiotensin converting enzyme inhibitor, their blood pressure increases paradoxically. We suggest that this is a result of interruption of AT2-receptor signaling. In summary, our studies suggest that both AT1 receptors promote somatic growth and maintenance of normal kidney structure. The absence of either of the AT1 receptor isoforms alone can be compensated in varying degrees by the other isoform. These studies reaffirm and extend the importance of AT1 receptors to mediate physiological functions of the renin–angiotensin system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most eukaryotic cells, mitochondria use the respiratory chain to produce a proton gradient, which is then harnessed for the synthesis of ATP. Recently, mitochondrial roles in regulation of apoptosis have been discovered in many cell types. Eosinophils (Eos) die by apoptosis, but the presence and function of mitochondria in Eos are unknown. This study found that Eos contain mitochondria in small numbers, as shown by labeling with membrane potential-sensitive dyes and in situ PCR for a mitochondrial gene. Eos generate mitochondrial membrane potential from hydrolysis of ATP rather than from respiration, as shown by mitochondrial respiratory inhibitors and mitochondrial uncouplers. The mitochondria provide insignificant respiration but can induce apoptosis, as shown by using the mitochondrial F1F0-ATPase inhibitor oligomycin and translocation of cytochrome c. Thus during differentiation of Eos, although respiration is lost, the other central role of mitochondria, the induction of apoptosis, is retained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study demonstrates, by using neutral comet assay and pulsed field gel electrophoresis, that hyperosmotic stress causes DNA damage in the form of double strand breaks (dsb). Different solutes increase the rate of DNA dsb to different degrees at identical strengths of hyperosmolality. Hyperosmolality in the form of elevated NaCl (HNa) is most potent in this regard, whereas hyperosmolality in the form of elevated urea (HU) does not cause DNA dsb. The amount of DNA dsb increases significantly as early as 15 min after the onset of HNa. By using neutral comet and DNA ladder assays, we show that this rapid induction of DNA damage is not attributable to apoptosis. We demonstrate that renal inner medullary cells are able to efficiently repair hyperosmotic DNA damage within 48 h after exposure to hyperosmolality. DNA repair correlates with cell survival and is repressed by 25 μM LY294002, an inhibitor of DNA-activated protein kinases. These results strongly suggest that the hyperosmotic stress resistance of renal inner medullary cells is based not only on adaptations that protect cellular proteins from osmotic damage but, in addition, on adaptations that compensate DNA damage and maintain genomic integrity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metallothionein (MT) localizes in the intermembrane space of liver mitochondria as well as in the cytosol and nucleus. Incubation of intact liver mitochondria with physiological, micromolar concentrations of MT leads to the import of MT into the mitochondria where it inhibits respiration. This activity is caused by the N-terminal β-domain of MT; in this system, the isolated C-terminal α-domain is inactive. Free zinc inhibits respiration at concentrations commensurate with the zinc content of either MT or the isolated β-domain, indicating that MT inhibition involves zinc delivery to mitochondria. Respiratory inhibition of uncoupled mitochondria identifies the electron transfer chain as the primary site of inhibition. The apoform of MT, thionein, is an endogenous chelating agent and activates zinc-inhibited respiration with a 1:1 stoichiometry ([zinc binding sites]/[zinc]). Carbamoylation of the lysines of MT significantly attenuates the inhibitory effect, suggesting that these residues are critical for the passage of MT through the outer mitochondrial membrane. Such an import pathway has been proposed for other proteins that also lack a mitochondrial targeting sequence, e.g., apocytochrome c, and possibly Cox17, a mitochondrial copper chaperone that is the only protein known so far to exhibit significant primary sequence homology to MT. The presence and respiratory inhibition of MT in liver, but not heart, mitochondria suggest a hitherto unknown biological modulating activity of MT in cellular respiration and energy metabolism in a tissue-specific manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aldosterone and vasopressin are responsible for the final adjustment of sodium and water reabsorption in the kidney. In principal cells of the kidney cortical collecting duct (CCD), the integral response to aldosterone and the long-term functional effects of vasopressin depend on transcription. In this study, we analyzed the transcriptome of a highly differentiated mouse clonal CCD principal cell line (mpkCCDcl4) and the changes in the transcriptome induced by aldosterone and vasopressin. Serial analysis of gene expression (SAGE) was performed on untreated cells and on cells treated with either aldosterone or vasopressin for 4 h. The transcriptomes in these three experimental conditions were determined by sequencing 169,721 transcript tags from the corresponding SAGE libraries. Limiting the analysis to tags that occurred twice or more in the data set, 14,654 different transcripts were identified, 3,642 of which do not match known mouse sequences. Statistical comparison (at P < 0.05 level) of the three SAGE libraries revealed 34 AITs (aldosterone-induced transcripts), 29 ARTs (aldosterone-repressed transcripts), 48 VITs (vasopressin-induced transcripts) and 11 VRTs (vasopressin-repressed transcripts). A selection of the differentially-expressed, hormone-specific transcripts (5 VITs, 2 AITs and 1 ART) has been validated in the mpkCCDcl4 cell line either by Northern blot hybridization or reverse transcription–PCR. The hepatocyte nuclear transcription factor HNF-3-α (VIT39), the receptor activity modifying protein RAMP3 (VIT48), and the glucocorticoid-induced leucine zipper protein (GILZ) (AIT28) are candidate proteins playing a role in physiological responses of this cell line to vasopressin and aldosterone.