71 resultados para minichromosome maintenance protein 3
Resumo:
The degradation rate of 3-hydroxy-3-methylglutaryl CoA reductase (HMG-R), a key enzyme of the mevalonate pathway, is regulated through a feedback mechanism by the mevalonate pathway. To discover the intrinsic determinants involved in the regulated degradation of the yeast HMG-R isozyme Hmg2p, we replaced small regions of the Hmg2p transmembrane domain with the corresponding regions from the other, stable yeast HMG-R isozyme Hmg1p. When the first 26 amino acids of Hmg2p were replaced with the same region from Hmg1p, Hmg2p was stabilized. The stability of this mutant was not due to mislocalization, but rather to an inability to be recognized for degradation. When amino acid residues 27–54 of Hmg2p were replaced with those from Hmg1p, the mutant was still degraded, but its degradation rate was poorly regulated. The degradation of this mutant was still dependent on the first 26 amino acid residues and on the function of the HRD genes. These mutants showed altered ubiquitination levels that were well correlated with their degradative phenotypes. Neither determinant was sufficient to impart regulated degradation to Hmg1p. These studies provide evidence that there are sequence determinants in Hmg2p necessary for degradation and optimal regulation, and that independent processes may be involved in Hmg2p degradation and its regulation.
Resumo:
Yeast Las17 protein is homologous to the Wiskott–Aldrich Syndrome protein, which is implicated in severe immunodeficiency. Las17p/Bee1p has been shown to be important for actin patch assembly and actin polymerization. Here we show that Las17p interacts with the Arp2/3 complex. LAS17 is an allele-specific multicopy suppressor of ARP2 and ARP3 mutations; overexpression restores both actin patch organization and endocytosis defects in ARP2 temperature-sensitive (ts) cells. Six of seven ARP2 ts mutants and at least one ARP3 ts mutant are synthetically lethal with las17Δ ts confirming functional interaction with the Arp2/3 complex. Further characterization of las17Δ cells showed that receptor-mediated internalization of α factor by the Ste2 receptor is severely defective. The polarity of normal bipolar bud site selection is lost. Las17-gfp remains localized in cortical patches in vivo independently of polymerized actin and is required for the polarized localization of Arp2/3 as well as actin. Coimmunoprecipitation of Arp2p with Las17p indicates that Las17p interacts directly with the complex. Two hybrid results also suggest that Las17p interacts with actin, verprolin, Rvs167p and several other proteins including Src homology 3 (SH3) domain proteins, suggesting that Las17p may integrate signals from different regulatory cascades destined for the Arp2/3p complex and the actin cytoskeleton.
Resumo:
Myosin II heavy chain (MHC) specific protein kinase C (MHC-PKC), isolated from Dictyostelium discoideum, regulates myosin II assembly and localization in response to the chemoattractant cyclic AMP. Immunoprecipitation of MHC-PKC revealed that it resides as a complex with several proteins. We show herein that one of these proteins is a homologue of the 14–3-3 protein (Dd14–3-3). This protein has recently been implicated in the regulation of intracellular signaling pathways via its interaction with several signaling proteins, such as PKC and Raf-1 kinase. We demonstrate that the mammalian 14–3-3 ζ isoform inhibits the MHC-PKC activity in vitro and that this inhibition is carried out by a direct interaction between the two proteins. Furthermore, we found that the cytosolic MHC-PKC, which is inactive, formed a complex with Dd14–3-3 in the cytosol in a cyclic AMP-dependent manner, whereas the membrane-bound active MHC-PKC was not found in a complex with Dd14–3-3. This suggests that Dd14–3-3 inhibits the MHC-PKC in vivo. We further show that MHC-PKC binds Dd14–3-3 as well as 14–3-3ζ through its C1 domain, and the interaction between these two proteins does not involve a peptide containing phosphoserine as was found for Raf-1 kinase. Our experiments thus show an in vivo function for a member of the 14–3-3 family and demonstrate that MHC-PKC interacts directly with Dd14–3-3 and 14–3-3ζ through its C1 domain both in vitro and in vivo, resulting in the inhibition of the kinase.
Resumo:
Many of the protein–protein interactions that are essential for eukaryotic intracellular signal transduction are mediated by protein binding modules including SH2, SH3, and LIM domains. Nck is a SH3- and SH2-containing adaptor protein implicated in coordinating various signaling pathways, including those of growth factor receptors and cell adhesion receptors. We report here the identification, cloning, and characterization of a widely expressed, Nck-related adaptor protein termed Nck-2. Nck-2 comprises primarily three N-terminal SH3 domains and one C-terminal SH2 domain. We show that Nck-2 interacts with PINCH, a LIM-only protein implicated in integrin-linked kinase signaling. The PINCH-Nck-2 interaction is mediated by the fourth LIM domain of PINCH and the third SH3 domain of Nck-2. Furthermore, we show that Nck-2 is capable of recognizing several key components of growth factor receptor kinase-signaling pathways including EGF receptors, PDGF receptor-β, and IRS-1. The association of Nck-2 with EGF receptors was regulated by EGF stimulation and involved largely the SH2 domain of Nck-2, although the SH3 domains of Nck-2 also contributed to the complex formation. The association of Nck-2 with PDGF receptor-β was dependent on PDGF activation and was mediated solely by the SH2 domain of Nck-2. Additionally, we have detected a stable association between Nck-2 and IRS-1 that was mediated primarily via the second and third SH3 domain of Nck-2. Thus, Nck-2 associates with PINCH and components of different growth factor receptor-signaling pathways via distinct mechanisms. Finally, we provide evidence indicating that a fraction of the Nck-2 and/or Nck-1 proteins are associated with the cytoskeleton. These results identify a novel Nck-related SH2- and SH3-domain–containing protein and suggest that it may function as an adaptor protein connecting the growth factor receptor-signaling pathways with the integrin-signaling pathways.
Resumo:
An improved mammalian two-hybrid system designed for interaction trap screening is described in this paper. CV-1/EBNA-1 monkey kidney epithelial cells expressing Epstein–Barr virus nuclear antigen 1 (EBNA-1) were stably transfected with a reporter plasmid for GAL4-dependent expression of the green fluorescent protein (GFP). A resulting clone, GB133, expressed GFP strongly when transfected transiently with transcriptional activators fused to GAL4 DNA-binding domain with minimal background GFP expression. GB133 cells maintained plasmids containing the OriP Epstein–Barr virus replication origin that directs replication of plasmids in mammalian cells in the presence of the EBNA-1 protein. GB133 cells transfected stably with a model bait expressed GFP when further transfected transiently with an expression plasmid for a known positive prey. When the bait-expressing GB133 cells were transfected transiently with an OriP-containing expression plasmid for the positive prey together with excess amounts of empty vector, cells that received the positive prey were readily identified by green fluorescence in cell culture and eventually formed green fluorescent microcolonies, because the prey plasmid was maintained by the EBNA-1/Ori-P system. The green fluorescent microcolonies were harvested directly from the culture dishes under a fluorescence microscope, and total DNA was then prepared. Prey-encoding cDNA was recovered by PCR using primers annealing to the vector sequences flanking the insert-cloning site. This system should be useful in mammalian cells for efficient screening of cDNA libraries by two-hybrid interaction.
Resumo:
The oncogene p3k, coding for a constitutively active form of phosphatidylinositol 3-kinase (PI 3-kinase), strongly activates myogenic differentiation. Inhibition of endogenous PI 3-kinase activity with the specific inhibitor LY294002, or with dominant-negative mutants of PI 3-kinase, interferes with myotube formation and with the expression of muscle-specific proteins. Here we demonstrate that a downstream target of PI 3-kinase, serine-threonine kinase Akt, plays an important role in myogenic differentiation. Expression of constitutively active forms of Akt dramatically enhances myotube formation and expression of the muscle-specific proteins MyoD, creatine kinase, myosin heavy chain, and desmin. Transdominant negative forms of Akt inhibit myotube formation and the expression of muscle-specific proteins. The inhibition of myotube formation and the reduced expression of muscle-specific proteins caused by the PI 3-kinase inhibitor LY294002 are completely reversed by constitutively active forms of Akt. Wild-type cellular Akt effects a partial reversal of LY294002-induced inhibition of myogenic differentiation. This result suggests that Akt can substitute for PI 3-kinase in the stimulation of myogenesis; Akt may be an essential downstream component of PI 3-kinase-induced muscle differentiation.
Resumo:
PTEN/MMAC1 is a tumor suppressor gene located on chromosome 10q23. Inherited PTEN/MMAC1 mutations are associated with a cancer predisposition syndrome known as Cowden’s disease. Somatic mutation of PTEN has been found in a number of malignancies, including glioblastoma, melanoma, and carcinoma of the prostate and endometrium. The protein product (PTEN) encodes a dual-specificity protein phosphatase and in addition can dephosphorylate certain lipid substrates. Herein, we show that PTEN protein induces a G1 block when reconstituted in PTEN-null cells. A PTEN mutant associated with Cowden’s disease (PTEN;G129E) has protein phosphatase activity yet is defective in dephosphorylating inositol 1,3,4,5-tetrakisphosphate in vitro and fails to arrest cells in G1. These data suggest a link between induction of a cell-cycle block by PTEN and its ability to dephosphorylate, in vivo, phosphatidylinositol 3,4,5-trisphosphate. In keeping with this notion, PTEN can inhibit the phosphatidylinositol 3,4,5-trisphosphate-dependent Akt kinase, a downstream target of phosphatidylinositol 3-kinase, and constitutively active, but not wild-type, Akt overrides a PTEN G1 arrest. Finally, tumor cells lacking PTEN contain high levels of activated Akt, suggesting that PTEN is necessary for the appropriate regulation of the phosphatidylinositol 3-kinase/Akt pathway.
Resumo:
The diphtheria toxin repressor (DtxR) is the best-characterized member of a family of homologous proteins that regulate iron uptake and virulence gene expression in the Gram-positive bacteria. DtxR contains two domains that are separated by a short, unstructured linker. The N-terminal domain is structurally well-defined and is responsible for Fe2+ binding, dimerization, and DNA binding. The C-terminal domain adopts a fold similar to eukaryotic Src homology 3 domains, but the functional role of the C-terminal domain in repressor activity is unknown. The solution structure of the C-terminal domain, consisting of residues N130-L226 plus a 13-residue N-terminal extension, has been determined by using NMR spectroscopy. Residues before A147 are highly mobile and adopt a random coil conformation, but residues A147-L226 form a single structured domain consisting of five β-strands and three helices arranged into a partially orthogonal, two-sheet β-barrel, similar to the structure observed in the crystalline Co2+ complex of full-length DtxR. Chemical shift perturbation studies demonstrate that a proline-rich peptide corresponding to residues R125-G139 of intact DtxR binds to the C-terminal domain in a pocket formed by residues in β-strands 2, 3, and 5, and helix 3. Binding of the proline-rich peptide by the C-terminal domain of DtxR presents an example of peptide binding by a prokaryotic Src homology 3-like protein. The results of this study, combined with previous x-ray studies of intact DtxR, provide insights into a possible biological function of the C-terminal domain in regulating repressor activity.
Resumo:
To investigate the molecular basis of PTEN-mediated tumor suppression, we introduced a null mutation into the mouse Pten gene by homologous recombination in embryonic stem (ES) cells. Pten−/− ES cells exhibited an increased growth rate and proliferated even in the absence of serum. ES cells lacking PTEN function also displayed advanced entry into S phase. This accelerated G1/S transition was accompanied by down-regulation of p27KIP1, a major inhibitor for G1 cyclin-dependent kinases. Inactivation of PTEN in ES cells and in embryonic fibroblasts resulted in elevated levels of phosphatidylinositol 3,4,5,-trisphosphate, a product of phosphatidylinositol 3 kinase. Consequently, PTEN deficiency led to dosage-dependent increases in phosphorylation and activation of Akt/protein kinase B, a well-characterized target of the phosphatidylinositol 3 kinase signaling pathway. Akt activation increased Bad phosphorylation and promoted Pten−/− cell survival. Our studies suggest that PTEN regulates the phosphatidylinositol 3,4,5,-trisphosphate and Akt signaling pathway and consequently modulates two critical cellular processes: cell cycle progression and cell survival.
Resumo:
Certain plant viruses encode suppressors of posttranscriptional gene silencing (PTGS), an adaptive antiviral defense response that limits virus replication and spread. The tobacco etch potyvirus protein, helper component-proteinase (HC-Pro), suppresses PTGS of silenced transgenes. The effect of HC-Pro on different steps of the silencing pathway was analyzed by using both transient Agrobacterium tumefaciens-based delivery and transgenic systems. HC-Pro inactivated PTGS in plants containing a preexisting silenced β-glucuronidase (GUS) transgene. PTGS in this system was associated with both small RNA molecules (21–26 nt) corresponding to the 3′ proximal region of the transcribed GUS sequence and cytosine methylation of specific sites near the 3′ end of the GUS transgene. Introduction of HC-Pro into these plants resulted in loss of PTGS, loss of small RNAs, and partial loss of methylation. These results suggest that HC-Pro targets a PTGS maintenance (as opposed to an initiation or signaling) component at a point that affects accumulation of small RNAs and methylation of genomic DNA.
Resumo:
The small GTP-binding protein Cdc42 is thought to induce filopodium formation by regulating actin polymerization at the cell cortex. Although several Cdc42-binding proteins have been identified and some of them have been implicated in filopodium formation, the precise role of Cdc42 in modulating actin polymerization has not been defined. To understand the biochemical pathways that link Cdc42 to the actin cytoskeleton, we have reconstituted Cdc42-induced actin polymerization in Xenopus egg extracts. Using this cell-free system, we have developed a rapid and specific assay that has allowed us to fractionate the extract and isolate factors involved in this activity. We report here that at least two biochemically distinct components are required, based on their chromatographic behavior and affinity for Cdc42. One component is purified to homogeneity and is identified as the Arp2/3 complex, a protein complex that has been shown to nucleate actin polymerization. However, the purified complex alone is not sufficient to mediate the activity; a second component that binds Cdc42 directly and mediates the interaction between Cdc42 and the complex also is required. These results establish an important link between a signaling molecule, Cdc42, and a complex that can directly modulate actin networks in vitro. We propose that activation of the Arp2/3 complex by Cdc42 and other signaling molecules plays a central role in stimulating actin polymerization at the cell surface.
Resumo:
HIV type 1 (HIV-1) specifically uses host cell tRNALys-3 as a primer for reverse transcription. The 3′ 18 nucleotides of this tRNA are complementary to a region on the HIV RNA genome known as the primer binding site (PBS). HIV-1 has a strong preference for maintaining a lysine-specific PBS in vivo, and viral genomes with mutated PBS sequences quickly revert to be complementary to tRNALys-3. To investigate the mechanism for the observed PBS reversion events in vitro, we examined the capability of the nucleocapsid protein (NC) to anneal various tRNA primer sequences onto either complementary or noncomplementary PBSs. We show that NC can anneal different full-length tRNAs onto viral RNA transcripts derived from the HIV-1 MAL or HXB2 isolates, provided that the PBS is complementary to the tRNA used. In contrast, NC promotes specific annealing of only tRNALys-3 onto an RNA template (HXB2) whose PBS sequence has been mutated to be complementary to the 3′ 18 nt of human tRNAPro. Moreover, HIV-1 reverse transcriptase extends this binary complex from the proline-specific PBS. The formation of the noncomplementary binary complex does not occur when a chimeric tRNALys/Pro containing proline-specific D and anticodon domains is used as the primer. Thus, elements outside the acceptor-TΨC domains of tRNALys-3 play an important role in preferential primer use in vitro. Our results support the hypothesis that mutant PBS reversion is a result of tRNALys-3 annealing onto and extension from a PBS that specifies an alternate host cell tRNA.
Resumo:
Tumor necrosis factor α (TNFα) acts as a beneficial mediator in the process of host defence. In recent years major interest has focused on the AU-rich elements (AREs) present in the 3′-untranslated region (3′-UTR) of TNFα mRNA as this region plays a pivotal role in post-transcriptional control of TNFα production. Certain stimuli, such as lipopolysaccharides, a component of the Gram-negative bacterial cell wall, have the ability to relinquish the translational suppression of TNFα mRNA imposed by these AREs in macrophages, thereby enabling the efficient production of the TNFα. In this study we show that the polymorphism (GAU trinucleotide insertional mutation) present in the regulatory 3′-UTR of TNFα mRNA of NZW mice results in the hindered binding of RNA-binding proteins, thereby leading to a significantly reduced production of TNFα protein. We also show that the binding of macrophage proteins to the main ARE is also decreased by another trinucleotide (CAU) insertion in the TNFα 3′-UTR. One of the proteins affected by the GAU trinucleotide insertional mutation was identified as HuR, a nucleo-cytoplasmic shuttling protein previously shown to play a prominent role in the stability and translatability of mRNA containing AREs. Since binding of this protein most likely modulates the stability, translational efficiency and transport of TNFα mRNA, these results suggest that mutations in the ARE of TNFα mRNA decrease the production of TNFα protein in macrophages by hindering the binding of HuR to the ARE.
Resumo:
We have previously shown that Y box-binding protein-1 (YB-1) binds preferentially to cisplatin-modified Y box sequences. Based on structural and biochemical data, we predicted that this protein binds single-stranded nucleic acids. In the present study we confirmed the prediction and also discovered some unexpected functional features of YB-1. We found that the cold shock domain of the protein is necessary but not sufficient for double-stranded DNA binding while the C-tail domain interacts with both single-stranded DNA and RNA independently of the cold shock domain. In an in vitro translation system the C-tail domain of the protein inhibited translation but the cold shock domain did not. Both in vitro pull-down and in vivo co-immunoprecipitation assays revealed that YB-1 can form a homodimer. Deletion analysis mapped the C-tail domain of the protein as the region of homodimerization. We also characterized an intrinsic 3′→5′ DNA exonuclease activity of the protein. The region between residues 51 and 205 of its 324-amino acid extent is required for full exonuclease activity. Our findings suggest that YB-1 functions in regulating DNA/RNA transactions and that these actions involve different domains.
Resumo:
The Dali Domain Dictionary (http://www.ebi.ac.uk/dali/domain) is a numerical taxonomy of all known structures in the Protein Data Bank (PDB). The taxonomy is derived fully automatically from measurements of structural, functional and sequence similarities. Here, we report the extension of the classification to match the traditional four hierarchical levels corresponding to: (i) supersecondary structural motifs (attractors in fold space), (ii) the topology of globular domains (fold types), (iii) remote homologues (functional families) and (iv) homologues with sequence identity above 25% (sequence families). The computational definitions of attractors and functional families are new. In September 2000, the Dali classification contained 10 531 PDB entries comprising 17 101 chains, which were partitioned into five attractor regions, 1375 fold types, 2582 functional families and 3724 domain sequence families. Sequence families were further associated with 99 582 unique homologous sequences in the HSSP database, which increases the number of effectively known structures several-fold. The resulting database contains the description of protein domain architecture, the definition of structural neighbours around each known structure, the definition of structurally conserved cores and a comprehensive library of explicit multiple alignments of distantly related protein families.