109 resultados para microsomal triacylglycerol transfer protein
Resumo:
In prokaryotes, in the absence of protein serine/threonine/tyrosine kinases, protein histidine kinases play a major role in signal transduction involved in cellular adaptation to various environmental changes and stresses. Histidine kinases phosphorylate their cognate response regulators at a specific aspartic acid residue with ATP in response to particular environmental signals. In this His-Asp phosphorelay signal transduction system, it is still unknown how the histidine kinase exerts its enzymatic function. Here we demonstrate that the cytoplasmic kinase domain of EnvZ, a transmembrane osmosensor of Escherichia coli can be further divided into two distinct functional subdomains: subdomain A [EnvZ(C)⋅(223–289); 67 residues] and subdomain B [EnvZ(C)⋅(290–450); 161 residues]. Subdomain A, with a high helical content, contains the autophosphorylation site, H–243, and forms a stable dimer having the recognition site for OmpR, the cognate response regulator of EnvZ. Subdomain B, an α/β-protein, exists as a monomer. When mixed, the two subdomains reconstitute the kinase function to phosphorylate subdomain A at His-243 in the presence of ATP. Subsequently, the phosphorylated subdomain A is able to transfer its phosphate group to OmpR. The two-domain structure of this histidine kinase provides an insight into the structural arrangement of the enzyme and its transphosphorylation mechanism.
Resumo:
Agrobacterium tumefaciens induces crown gall tumors on plants by transferring a nucleoprotein complex, the T-complex, from the bacterium to the plant cell. The T-complex consists of T-DNA, a single-stranded DNA segment of the tumor-inducing plasmid, VirD2, an endonuclease covalently bound to the 5′ end of the T-DNA, and perhaps VirE2, a single-stranded DNA binding protein. The yeast two-hybrid system was used to screen for proteins interacting with VirD2 and VirE2 to identify components in Arabidopsis thaliana that interact with the T-complex. Three VirD2- and two VirE2-interacting proteins were identified. Here we characterize the interactions of VirD2 with two isoforms of Arabidopsis cyclophilins identified by using this analysis. The VirD2 domain interacting with the cyclophilins is distinct from the endonuclease, omega, and the nuclear localization signal domains. The VirD2–cyclophilin interaction is disrupted in vitro by cyclosporin A, which also inhibits Agrobacterium-mediated transformation of Arabidopsis and tobacco. These data strongly suggest that host cyclophilins play a role in T-DNA transfer.
Resumo:
Organization of transgenes in rice transformed through direct DNA transfer strongly suggests a two-phase integration mechanism. In the “preintegration” phase, transforming plasmid molecules (either intact or partial) are spliced together. This gives rise to rearranged transgenic sequences, which upon integration do not contain any interspersed plant genomic sequences. Subsequently, integration of transgenic DNA into the host genome is initiated. Our experiments suggest that the original site of integration acts as a hot spot, facilitating subsequent integration of successive transgenic molecules at the same locus. The resulting transgenic locus may have plant DNA separating the transgenic sequences. Our data indicate that transformation through direct DNA transfer, specifically particle bombardment, generally results in a single transgenic locus as a result of this two-phase integration mechanism. Transgenic plants generated through such processes may, therefore, be more amenable to breeding programs as the single transgenic locus will be easier to characterize genetically. Results from direct DNA transfer experiments suggest that in the absence of protein factors involved in exogenous DNA transfer through Agrobacterium, the qualitative and/or quantitative efficiency of transformation events is not compromised. Our results cast doubt on the role of Agrobacterium vir genes in the integration process.
Resumo:
We report a serendipitous discovery that extends the impressive catalog of reporter functions performed by green fluorescent protein (GFP) or its derivatives. When two GFP molecules are brought into proximity, changes in the relative intensities of green fluorescence emitted upon excitation at 395 vs. 475 nm result. These spectral changes provide a sensitive ratiometric index of the extent of self-association that can be exploited to quantitatively image homo-oligomerization or clustering processes of GFP-tagged proteins in vivo. The method, which we term proximity imaging (PRIM), complements fluorescence resonance energy transfer between a blue fluorescent protein donor and a GFP acceptor, a powerful method for imaging proximity relationships between different proteins. However, unlike fluorescence resonance energy transfer (which is a spectral interaction), PRIM depends on direct contact between two GFP modules, which can lead to structural perturbations and concomitant spectral changes within a module. Moreover, the precise spatial arrangement of the GFP molecules within a given dimer determines the magnitude and direction of the spectral change. We have used PRIM to detect FK1012-induced dimerization of GFP fused to FK506-binding protein and clustering of glycosylphosphatidylinositol-anchored GFP at cell surfaces.
Resumo:
Microsomal NADPH–cytochrome P450 reductase (CPR) is one of only two mammalian enzymes known to contain both FAD and FMN, the other being nitric-oxide synthase. CPR is a membrane-bound protein and catalyzes electron transfer from NADPH to all known microsomal cytochromes P450. The structure of rat liver CPR, expressed in Escherichia coli and solubilized by limited trypsinolysis, has been determined by x-ray crystallography at 2.6 Å resolution. The molecule is composed of four structural domains: (from the N- to C- termini) the FMN-binding domain, the connecting domain, and the FAD- and NADPH-binding domains. The FMN-binding domain is similar to the structure of flavodoxin, whereas the two C-terminal dinucleotide-binding domains are similar to those of ferredoxin–NADP+ reductase (FNR). The connecting domain, situated between the FMN-binding and FNR-like domains, is responsible for the relative orientation of the other domains, ensuring the proper alignment of the two flavins necessary for efficient electron transfer. The two flavin isoalloxazine rings are juxtaposed, with the closest distance between them being about 4 Å. The bowl-shaped surface near the FMN-binding site is likely the docking site of cytochrome c and the physiological redox partners, including cytochromes P450 and b5 and heme oxygenase.
Resumo:
The development of methods for efficient gene transfer to terminally differentiated retinal cells is important to study the function of the retina as well as for gene therapy of retinal diseases. We have developed a lentiviral vector system based on the HIV that can transduce terminally differentiated neurons of the brain in vivo. In this study, we have evaluated the ability of HIV vectors to transfer genes into retinal cells. An HIV vector containing a gene encoding the green fluorescent protein (GFP) was injected into the subretinal space of rat eyes. The GFP gene under the control of the cytomegalovirus promoter was efficiently expressed in both photoreceptor cells and retinal pigment epithelium. However, the use of the rhodopsin promoter resulted in expression predominantly in photoreceptor cells. Most successfully transduced eyes showed that photoreceptor cells in >80% of the area of whole retina expressed the GFP. The GFP expression persisted for at least 12 weeks with no apparent decrease. The efficient gene transfer into photoreceptor cells by HIV vectors will be useful for gene therapy of retinal diseases such as retinitis pigmentosa.
Resumo:
HIV-1 specifically incorporates the peptidyl prolyl isomerase cyclophilin A (CyPA), the cytosolic receptor for the immunosuppressant cyclosporin A (CsA). HIV-1 replication is inhibited by CsA as well as by nonimmunosuppressive CsA analogues that bind to CyPA and interfere with its virion association. In contrast, the related simian immunodeficiency virus SIVmac, which does not interact with CyPA, is resistant to these compounds. The incorporation of CyPA into HIV-1 virions is mediated by a specific interaction between the active site of the enzyme and the capsid (CA) domain of the HIV-1 Gag polyprotein. We report here that the transfer of HIV-1 CA residues 86–93, which form part of an exposed loop, to the corresponding position in SIVmac resulted in the efficient incorporation of CyPA and conferred an HIV-1-like sensitivity to a nonimmunosuppressive cyclosporin. HIV-1 CA residues 86–90 were also sufficient to transfer the ability to efficiently incorporate CyPA, provided that the length of the CyPA-binding loop was preserved. However, the resulting SIVmac mutant required the presence of cyclosporin for efficient virus replication. The results indicate that the presence or absence of a type II tight turn adjacent to the primary CyPA-binding site determines whether CyPA incorporation enhances or inhibits viral replication. By demonstrating that CyPA-binding-site residues can induce cyclosporin sensitivity in a heterologous context, this study provides direct in vivo evidence that the exposed loop between helices IV and V of HIV-1 CA not merely constitutes a docking site for CyPA but is a functional target of this cellular protein.
Resumo:
Triacylglycerols are quantitatively the most important storage form of energy for eukaryotic cells. Acyl CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the terminal and only committed step in triacylglycerol synthesis, by using diacylglycerol and fatty acyl CoA as substrates. DGAT plays a fundamental role in the metabolism of cellular diacylglycerol and is important in higher eukaryotes for physiologic processes involving triacylglycerol metabolism such as intestinal fat absorption, lipoprotein assembly, adipose tissue formation, and lactation. DGAT is an integral membrane protein that has never been purified to homogeneity, nor has its gene been cloned. We identified an expressed sequence tag clone that shared regions of similarity with acyl CoA:cholesterol acyltransferase, an enzyme that also uses fatty acyl CoA as a substrate. Expression of a mouse cDNA for this expressed sequence tag in insect cells resulted in high levels of DGAT activity in cell membranes. No other acyltransferase activity was detected when a variety of substrates, including cholesterol, were used as acyl acceptors. The gene was expressed in all tissues examined; during differentiation of NIH 3T3-L1 cells into adipocytes, its expression increased markedly in parallel with increases in DGAT activity. The identification of this cDNA encoding a DGAT will greatly facilitate studies of cellular glycerolipid metabolism and its regulation.
Resumo:
Although adenovirus can infect a wide range of cell types, lymphocytes are not generally susceptible to adenovirus infection, in part because of the absence of the expression of the cellular receptor for the adenoviral fiber protein. The cellular receptor for adenovirus and coxsackievirus (CAR) recently was cloned and shown to mediate adenoviral entry by interaction with the viral fiber protein. We show that the ectopic expression of CAR in various lymphocyte cell lines, which are almost completely resistant to adenovirus infection, is sufficient to facilitate the efficient transduction of these cells by recombinant adenoviruses. Furthermore, this property of CAR does not require its cytoplasmic domain, consistent with the idea that CAR primarily serves as a high affinity binding site for the adenoviral fiber protein, and that viral entry is mediated by interaction of the viral penton base proteins with cellular integrins. As a demonstration of their functional utility, we used CAR-expressing lymphocytes transduced with an adenovirus expressing Fas ligand to efficiently kill Fas receptor-expressing tumor cells. The ability to efficiently manipulate gene expression in lymphocyte cells by using adenovirus vectors should facilitate the functional characterization of pathways affecting lymphocyte physiology.
Resumo:
The yeast Sec1p protein functions in the docking of secretory transport vesicles to the plasma membrane. We previously have cloned two yeast genes encoding syntaxins, SSO1 and SSO2, as suppressors of the temperature-sensitive sec1–1 mutation. We now describe a third suppressor of sec1–1, which we call MSO1. Unlike SSO1 and SSO2, MSO1 is specific for sec1 and does not suppress mutations in any other SEC genes. MSO1 encodes a small hydrophilic protein that is enriched in a microsomal membrane fraction. Cells that lack MSO1 are viable, but they accumulate secretory vesicles in the bud, indicating that the terminal step in secretion is partially impaired. Moreover, loss of MSO1 shows synthetic lethality with mutations in SEC1, SEC2, and SEC4, and other synthetic phenotypes with mutations in several other late-acting SEC genes. We further found that Mso1p interacts with Sec1p both in vitro and in the two-hybrid system. These findings suggest that Mso1p is a component of the secretory vesicle docking complex whose function is closely associated with that of Sec1p.
Resumo:
Accumulation of unfolded proteins within the endoplasmic reticulum (ER) of eukaryotic cells triggers the unfolded protein response (UPR), which activates transcription of several genes encoding ER chaperones and folding enzymes. This study reports that conversion of dolichol-linked Man2–5GlcNAc2 intermediates into mature Glc3Man9GlcNAc2 oligosaccharides in primary human adult dermal fibroblasts is also stimulated by the UPR. This stimulation was not evident in several immortal cell lines and did not require a cytoplasmic stress response. Inhibition of dolichol-linked Glc3Man9GlcNAc2 synthesis by glucose deprivation could be counteracted by the UPR, improving the transfer of Glc3Man9GlcNAc2 to asparagine residues on nascent polypeptides. Glycosidic processing of asparagine-linked Glc3Man9GlcNAc2 in the ER leads to the production of monoglucosylated oligosaccharides that promote interaction with the lectin chaperones calreticulin and calnexin. Thus, control of the dolichol-linked Glc3Man9GlcNAc2 supply gives the UPR the potential to maintain efficient protein folding in the ER without new synthesis of chaperones or folding enzymes.
Resumo:
The mechanism of proton transfer from the bulk into the membrane protein interior was studied. The light-induced reduction of a bound ubiquinone molecule QB by the photosynthetic reaction center is accompanied by proton trapping. We used kinetic spectroscopy to measure (i) the electron transfer to QB (at 450 nm), (ii) the electrogenic proton delivery from the surface to the QB site (by electrochromic carotenoid response at 524 nm), and (iii) the disappearance of protons from the bulk solution (by pH indicators). The electron transfer to QB− and the proton-related electrogenesis proceeded with the same time constant of ≈100 μs (at pH 6.2), whereas the alkalinization in the bulk was distinctly delayed (τ ≈ 400 μs). We investigated the latter reaction as a function of the pH indicator concentration, the added pH buffers, and the temperature. The results led us to the following conclusions: (i) proton transfer from the surface-located acidic groups into the QB site followed the reduction of QB without measurable delay; (ii) the reprotonation of these surface groups by pH indicators and hydronium ions was impeded, supposedly, because of their slow diffusion in the surface water layer; and (iii) as a result, the protons were slowly donated by neutral water to refill the proton vacancies at the surface. It is conceivable that the same mechanism accounts for the delayed relaxation of the surface pH changes into the bulk observed previously with bacteriorhodopsin membranes and thylakoids. Concerning the coupling between proton pumps in bioenergetic membranes, our results imply a tendency for the transient confinement of protons at the membrane surface.
Resumo:
A protein fluorescence probe system, coupling excited-state intermolecular Förster energy transfer and intramolecular proton transfer (PT), is presented. As an energy donor for this system, we used tryptophan, which transfers its excitation energy to 3-hydroxyflavone (3-HF) as a flavonol prototype, an acceptor exhibiting excited-state intramolecular PT. We demonstrate such a coupling in human serum albumin–3-HF complexes, excited via the single intrinsic tryptophan (Trp-214). Besides the PT tautomer fluorescence (λmax = 526 nm), these protein–probe complexes exhibit a 3-HF anion emission (λmax = 500 nm). Analysis of spectroscopic data leads to the conclusion that two binding sites are involved in the human serum albumin–3-HF interaction. The 3-HF molecule bound in the higher affinity binding site, located in the IIIA subdomain, has the association constant (k1) of 7.2 × 105 M−1 and predominantly exists as an anion. The lower affinity site (k2 = 2.5 × 105 M−1), situated in the IIA subdomain, is occupied by the neutral form of 3-HF (normal tautomer). Since Trp-214 is situated in the immediate vicinity of the 3-HF normal tautomer bound in the IIA subdomain, the intermolecular energy transfer for this donor/acceptor pair has a 100% efficiency and is followed by the PT tautomer fluorescence. Intermolecular energy transfer from the Trp-214 to the 3-HF anion bound in the IIIA subdomain is less efficient and has the rate of 1.61 × 108 s−1, thus giving for the donor/acceptor distance a value of 25.5 Å.
Resumo:
We present evidence that the size of an active site side chain may modulate the degree of hydrogen tunneling in an enzyme-catalyzed reaction. Primary and secondary kH/kT and kD/kT kinetic isotope effects have been measured for the oxidation of benzyl alcohol catalyzed by horse liver alcohol dehydrogenase at 25°C. As reported in earlier studies, the relationship between secondary kH/kT and kD/kT isotope effects provides a sensitive probe for deviations from classical behavior. In the present work, catalytic efficiency and the extent of hydrogen tunneling have been correlated for the alcohol dehydrogenase-catalyzed hydride transfer among a group of site-directed mutants at position 203. Val-203 interacts with the opposite face of the cofactor NAD+ from the alcohol substrate. The reduction in size of this residue is correlated with diminished tunneling and a two orders of magnitude decrease in catalytic efficiency. Comparison of the x-ray crystal structures of a ternary complex of a high-tunneling (Phe-93 → Trp) and a low-tunneling (Val-203 → Ala) mutant provides a structural basis for the observed effects, demonstrating an increase in the hydrogen transfer distance for the low-tunneling mutant. The Val-203 → Ala ternary complex crystal structure also shows a hyperclosed interdomain geometry relative to the wild-type and the Phe-93 → Trp mutant ternary complex structures. This demonstrates a flexibility in interdomain movement that could potentially narrow the distance between the donor and acceptor carbons in the native enzyme and may enhance the role of tunneling in the hydride transfer reaction.
Resumo:
In bacterial photosynthetic reaction centers, the protonation events associated with the different reduction states of the two quinone molecules constitute intrinsic probes of both the electrostatic interactions and the different kinetic events occurring within the protein in response to the light-generated introduction of a charge. The kinetics and stoichiometries of proton uptake on formation of the primary semiquinone QA− and the secondary acceptor QB− after the first and second flashes have been measured, at pH 7.5, in reaction centers from genetically modified strains and from the wild type. The modified strains are mutated at the L212Glu and/or at the L213Asp sites near QB; some of them carry additional mutations distant from the quinone sites (M231Arg → Leu, M43Asn → Asp, M5Asn → Asp) that compensate for the loss of L213Asp. Our data show that the mutations perturb the response of the protein system to the formation of a semiquinone, how distant compensatory mutations can restore the normal response, and the activity of a tyrosine residue (M247Ala → Tyr) in increasing and accelerating proton uptake. The data demonstrate a direct correlation between the kinetic events of proton uptake that are observed with the formation of either QA− or QB−, suggesting that the same residues respond to the generation of either semiquinone species. Therefore, the efficiency of transferring the first proton to QB is evident from examination of the pattern of H+/QA− proton uptake. This delocalized response of the protein complex to the introduction of a charge is coordinated by an interactive network that links the Q− species, polarizable residues, and numerous water molecules that are located in this region of the reaction center structure. This could be a general property of transmembrane redox proteins that couple electron transfer to proton uptake/release reactions.