87 resultados para merozoite surface protein-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three-dimensional structure of protein kinase C interacting protein 1 (PKCI-1) has been solved to high resolution by x-ray crystallography using single isomorphous replacement with anomalous scattering. The gene encoding human PKCI-1 was cloned from a cDNA library by using a partial sequence obtained from interactions identified in the yeast two-hybrid system between PKCI-1 and the regulatory domain of protein kinase C-beta. The PKCI-1 protein was expressed in Pichia pastoris as a dimer of two 13.7-kDa polypeptides. PKCI-1 is a member of the HIT family of proteins, shown by sequence identity to be conserved in a broad range of organisms including mycoplasma, plants, and humans. Despite the ubiquity of this protein sequence in nature, no distinct function has been shown for the protein product in vitro or in vivo. The PKCI-1 protomer has an alpha+beta meander fold containing a five-stranded antiparallel sheet and two helices. Two protomers come together to form a 10-stranded antiparallel sheet with extensive contacts between a helix and carboxy terminal amino acids of a protomer with the corresponding amino acids in the other protomer. PKCI-1 has been shown to interact specifically with zinc. The three-dimensional structure has been solved in the presence and absence of zinc and in two crystal forms. The structure of human PKCI-1 provides a model of this family of proteins which suggests a stable fold conserved throughout nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone morphogenic protein-1 (BMP-1) was originally identified as one of several BMPs that induced new bone formation when implanted into ectopic sites in rodents. BMP-1, however, differed from other BMPs in that it its structure was not similar to transforming growth factor beta. Instead, it had a large domain homologous to a metalloendopeptidase isolated from crayfish, an epidermal growth-factor-like domain, and three regions of internal sequence homology referred to as CUB domains. Therefore, BMP-1 was a member of the "astacin families" of zinc-requiring endopeptidases. Many astacins have been shown to play critical roles in embryonic hatching, dorsal/ventral patterning, and early developmental decisions. Here, we have obtained amino acid sequences and isolated cDNA clones for procollagen C-proteinase (EC 3.4.24.19), an enzyme that is essential for the processing of procollagens to fibrillar collagens. The results demonstrate that procollagen C-proteinase is identical to BMP-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the three-dimensional structure of osteogenic protein 1 (OP-1, also known as bone morphogenetic protein 7) to 2.8-A resolution. OP-1 is a member of the transforming growth factor beta (TGF-beta) superfamily of proteins and is able to induce new bone formation in vivo. Members of this superfamily share sequence similarity in their C-terminal regions and are implicated in embryonic development and adult tissue repair. Our crystal structure makes possible the structural comparison between two members of the TGF-beta superfamily. We find that although there is limited sequence identity between OP-1 and TGF-beta 2, they share a common polypeptide fold. These results establish a basis for proposing the OP-1/TGF-beta 2 fold as the primary structural motif for the TGF-beta superfamily as a whole. Detailed comparison of the OP-1 and TGF-beta 2 structures has revealed striking differences that provide insights into how these growth factors interact with their receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autonomously replicating sequence (ARS) elements of the fission yeast Schizosaccharomyces pombe contain multiple imperfect copies of the consensus sequence reported by Maundrell et al. [Maundrell K., Hutchison, A. & Shall, S. (1988) EMBO J. 7, 2203-2209]. When cell free extracts of S. pombe were incubated with a dimer or tetramer of an oligonucleotide containing the ARS consensus sequence, several complexes were detected using a gel mobility-shift assay. The proteins forming these complexes also bind ars3002, which is the most active origin in the ura4 region of chromosome III of S. pombe. One protein, partly responsible for the binding activity observed with crude extracts, was purified to near homogeneity. It is a 60-kDa protein and was named ARS-binding protein 1 (Abp1). Abp1 preferentially binds to multiple sites in ARS 3002 and to the DNA polymer poly[d(A.T)]. The cloning and sequence of the gene coding for Abp1 revealed that it encodes a protein of 59.8 kDa (522 amino acids). Abp1 has significant homology (25% identity, 50% similarity) to the N-terminal region (approximately 300 amino acids) of the human and mouse centromere DNA-binding protein CENP-B. Because centromeres of S. pombe contain a high density of ARS elements, Abp1 may play a role connecting DNA replication and chromosome segregation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial cells, serving as a barrier between vessel and blood, are exposed to shear stress in the body. Although endothelial responses to shear stress are important in physiological adaption to the hemodynamic environments, they can also contribute to pathological conditions--e.g., in atherosclerosis and reperfusion injury. We have previously shown that shear stress mediates a biphasic response of monocyte chemotactic protein 1 (MCP-1) gene expression in vascular endothelial cells and that the regulation is at the transcriptional level. These observations led us to functionally analyze the 550-bp promoter region of the MCP-1-encoding gene to define the cis element responding to shear stress. The shear stress/luciferase assay on the deletion constructs revealed that a 38-bp segment (-53 to -90 bp relative to the transcription initiation site) containing two divergent phorbol ester "12-O-tetradecanoylphorbol 13-acetate" (TPA)-responsive elements (TRE) is critical for shear inducibility. Site-specific mutations on these two sites further demonstrated that the proximal one (TGACTCC) but not the distal one (TCACTCA) was shear-responsive. Shear inducibility was lost after the mutation or deletion of the proximal site. This molecular mechanism of shear inducibility of the MCP-1 gene was functional in both the epithelial-like HeLa cells and bovine aortic endothelial cells (BAEC). In a construct with four copies of the TRE consensus sequences TGACTACA followed by the rat prolactin minimal promoter and luciferase gene, shear stress induced the reporter activities by 35-fold and 7-fold in HeLa cells and BAEC, respectively. The application of shear stress on BAEC also induced a rapid and transient phosphorylation of mitogen-activated protein kinases. Pretreatment of BAEC with TPA attenuated the shear-induced mitogen-activated protein kinase phosphorylation, suggesting that shear stress and TPA share a similar signal transduction pathway in activating cells. The present study provides a molecular basis for the transient induction of MCP-1 gene by shear stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shigella flexneri is a Gram-negative bacterial pathogen that can grow directly in the cytoplasm of infected host cells and uses a form of actin-based motility for intra- and intercellular spread. Moving intracellular bacteria are associated with a polarized "comet tail" composed of actin filaments. IcsA, a 120-kDa outer membrane protein necessary for actin-based motility, is located at a single pole on the surface of the organism, at the junction with the actin tail. Here, we demonstrate that stable expression of IcsA on the surface of Escherichia coli is sufficient to allow actin-dependent movement of E. coli in cytoplasmic extracts, at rates comparable to the movement of S. flexneri in infected cells. Thus, IcsA is the sole Shigella-specific factor required for actin-based motility. Continuous protein synthesis and polarized distribution of the protein are not necessary for actin tail formation or movement. Listeria monocytogenes is an unrelated bacterial pathogen that exhibits similar actin-based intracytoplasmic motility. Actin filament dynamics in the comet tails associated with the two different organisms are essentially identical, which indicates that they have independently evolved mechanisms to interact with the same components of the host cytoskeleton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feedback regulation of transcription from the low density lipoprotein (LDL) receptor gene is fundamentally important in the maintenance of intracellular sterol balance. The region of the LDL receptor promoter responsible for normal sterol regulation contains adjacent binding sites for the ubiquitous transcription factor Sp1 and the cholesterol-sensitive sterol regulatory element-binding proteins (SREBPs). Interestingly, both are essential for normal sterolmediated regulation of the promoter. The cooperation by Sp1 and SREBP-1 occurs at two steps in the activation process. SREBP-1 stimulates the binding of Sp1 to its adjacent recognition site in the promoter followed by enhanced stimulation of transcription after both proteins are bound to DNA. In the present report, we have defined the protein domains of Sp1 that are required for both synergistic DNA binding and transcriptional activation. The major activation domains of Sp1 that have previously been shown to be essential to activation of promoters containing multiple Sp1 sites are required for activation of the LDL receptor promoter. Additionally, the C domain is also crucial. This slightly acidic approximately 120-amino acid region is not required for efficient synergistic activation by multiple Sp1 sites or in combination with other recently characterized transcriptional regulators. We also show that Sp1 domain C is essential for full, enhanced DNA binding by SREBP-1. Taken together with other recent studies on the role of Sp1 in promoter activation, the current experiments suggest a unique combinatorial mechanism for promoter activation by two distinct transcription factors that are both essential to intracellular cholesterol homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The soybean genome hosts a family of several hundred, relatively homogeneous copies of a large, copia/Ty1-like retroelement designated SIRE-1. A copy of this element has been recovered from a Glycine max genomic library. DNA sequence analysis of two SIRE-1 subclones revealed that SIRE-1 contains a long, uninterrupted, ORF between the 3′ end of the pol ORF and the 3′ long terminal repeat (LTR), a region that harbors the env gene in retroviral genomes. Conceptual translation of this second ORF produces a 70-kDa protein. Computer analyses of the amino acid sequence predicted patterns of transmembrane domains, α-helices, and coiled coils strikingly similar to those found in mammalian retroviral envelope proteins. In addition, a 65-residue, proline-rich domain is characterized by a strong amino acid compositional bias virtually identical to that of the 60-amino acid, proline-rich neutralization domain of the feline leukemia virus surface protein. The assignment of SIRE-1 to the copia/Ty1 family was confirmed by comparison of the conceptual translation of its reverse transcriptase-like domain with those of other retroelements. This finding suggests the presence of a proretrovirus in a plant genome and is the strongest evidence to date for the existence of a retrovirus-like genome closely related to copia/Ty1 retrotransposons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemokines comprise a family of low-molecular-weight proteins that elicit a variety of biological responses including chemotaxis, intracellular Ca2+ mobilization, and activation of tyrosine kinase signaling cascades. A subset of chemokines, including regulated upon activation, normal T cell expressed and secreted (RANTES), macrophage inflammatory protein-1α (MIP-1α), and MIP-1β, also suppress infection by HIV-1. All of these activities are contingent on interactions between chemokines and cognate seven-transmembrane spanning, G protein-coupled receptors. However, these activities are strongly inhibited by glycanase treatment of receptor-expressing cells, indicating an additional dependence on surface glycosaminoglycans (GAG). To further investigate this dependence, we examined whether soluble GAG could reconstitute the biological activities of RANTES on glycanase-treated cells. Complexes formed between RANTES and a number of soluble GAG failed to induce intracellular Ca2+ mobilization on either glycanase-treated or untreated peripheral blood mononuclear cells and were unable to stimulate chemotaxis. In contrast, the same complexes demonstrated suppressive activity against macrophage tropic HIV-1. Complexes composed of 125I-labeled RANTES demonstrated saturable binding to glycanase-treated peripheral blood mononuclear cells, and such binding could be reversed partially by an anti-CCR5 antibody. These results suggest that soluble chemokine–GAG complexes represent seven-transmembrane ligands that do not activate receptors yet suppress HIV infection. Such complexes may be considered as therapeutic formulations for the treatment of HIV-1 infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF), also known as vascular permeability factor, is a cytokine of central importance for the angiogenesis associated with cancers and other pathologies. Because angiogenesis often involves endothelial cell (EC) migration and proliferation within a collagen-rich extracellular matrix, we investigated the possibility that VEGF promotes neovascularization through regulation of collagen receptor expression. VEGF induced a 5- to 7-fold increase in dermal microvascular EC surface protein expression of two collagen receptors—the α1β1 and α2β1 integrins—through induction of mRNAs encoding the α1 and α2 subunits. In contrast, VEGF did not induce increased expression of the α3β1 integrin, which also has been implicated in collagen binding. Integrin α1-blocking and α2-blocking antibodies (Ab) each partially inhibited attachment of microvascular EC to collagen I, and α1-blocking Ab also inhibited attachment to collagen IV and laminin-1. Induction of α1β1 and α2β1 expression by VEGF promoted cell spreading on collagen I gels which was abolished by a combination of α1-blocking and α2-blocking Abs. In vivo, a combination of α1-blocking and α2-blocking Abs markedly inhibited VEGF-driven angiogenesis; average cross-sectional area of individual new blood vessels was reduced 90% and average total new vascular area was reduced 82% without detectable effects on the pre-existing vasculature. These data indicate that induction of α1β1 and α2β1 expression by EC is an important mechanism by which VEGF promotes angiogenesis and that α1β1 and α2β1 antagonists may prove effective in inhibiting VEGF-driven angiogenesis in cancers and other important pathologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmodium falciparum parasites evade the host immune system by clonal expression of the variant antigen, P. falciparum erythrocyte membrane protein 1 (PfEMP1). Antibodies to PfEMP1 correlate with development of clinical immunity but are predominantly variant-specific. To overcome this major limitation for vaccine development, we set out to identify cross-reactive epitopes on the surface of parasitized erythrocytes (PEs). We prepared mAbs to the cysteine-rich interdomain region 1 (CIDR1) of PfEMP1 that is functionally conserved for binding to CD36. Two mAbs, targeting different regions of CIDR1, reacted with multiple P. falciparum strains expressing variant PfEMP1s. One of these mAbs, mAb 6A2-B1, recognized nine of 10 strains tested, failing to react with only one strain that does not bind CD36. Flow cytometry with Chinese hamster ovary cells expressing variant CIDR1s demonstrated that both mAbs recognized the CIDR1 of various CD36-binding PfEMP1s and are truly cross-reactive. The demonstration of cross-reactive epitopes on the PE surface provides further credence for development of effective vaccines against the variant antigen on the surface of P. falciparum-infected erythrocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Jaagsiekte sheep retrovirus (JSRV) can induce rapid, multifocal lung cancer, but JSRV is a simple retrovirus having no known oncogenes. Here we show that the envelope (env) gene of JSRV has the unusual property that it can induce transformation in rat fibroblasts, and thus is likely to be responsible for oncogenesis in animals. Retrovirus entry into cells is mediated by Env interaction with particular cell-surface receptors, and we have used phenotypic screening of radiation hybrid cell lines to identify the candidate lung cancer tumor suppressor HYAL2/LUCA2 as the receptor for JSRV. HYAL2 was previously described as a lysosomal hyaluronidase, but we show that HYAL2 is actually a glycosylphosphatidylinositol (GPI)-anchored cell-surface protein. Furthermore, we could not detect hyaluronidase activity associated with or secreted by cells expressing HYAL2, whereas we could easily detect such activity from cells expressing the related serum hyaluronidase HYAL1. Although the function of HYAL2 is currently unknown, other GPI-anchored proteins are involved in signal transduction, and some mediate mitogenic responses, suggesting a potential role of HYAL2 in JSRV Env-mediated oncogenesis. Lung cancer induced by JSRV closely resembles human bronchiolo-alveolar carcinoma, a disease that is increasing in frequency and now accounts for ≈25% of all lung cancer. The finding that JSRV env is oncogenic and the identification of HYAL2 as the JSRV receptor provide tools for further investigation of the mechanism of JSRV oncogenesis and its relationship to human bronchiolo-alveolar carcinoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteinase inhibitor I (Inh I) and proteinase inhibitor II (Inh II) from potato tubers are effective proteinase inhibitors of chymotrypsin and trypsin. Inh I and Inh II were shown to suppress irradiation-induced transformation in mouse embryo fibroblasts suggesting that they possess anticarcinogenic characteristics. We have previously demonstrated that Inh I and Inh II could effectively block UV irradiation-induced activation of transcription activator protein 1 (AP-1) in mouse JB6 epidermal cells, which mechanistically may explain their anticarcinogenic actions. In the present study, we investigated the effects of Inh I and Inh II on the expression and composition pattern of the AP-1 complex following stimulation by UV B (UVB) irradiation in the JB6 model. We found that Inh I and Inh II specifically inhibited UVB-induced AP-1, but not NFκB, activity in JB6 cells. Both Inh I and Inh II up-regulated AP-1 constituent proteins, JunD and Fra-2, and suppressed c-Jun and c-Fos expression and composition in bound AP-1 in response to UVB stimulation. This regulation of the AP-1 protein compositional pattern in response to Inh I or Inh II may be critical for the inhibition of UVB-induced AP-1 activity by these agents found in potatoes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cysteinyl leukotrienes (cys-LTs) LTC4, LTD4, and LTE4 are a class of peptide-conjugated lipids formed from arachidonic acid and released during activation of mast cells (MCs). We now report that human cord-blood-derived MCs (hMCs) express the CysLT1 receptor, which responds not only to inflammation-derived cys-LTs, but also to a pyrimidinergic ligand, UDP. hMCs express both CysLT1 protein and transcript, and respond to LTC4, LTD4, and UDP with concentration-dependent calcium fluxes, each of which is blocked by a competitive CysLT1 receptor antagonist, MK571. Stably transfected Chinese hamster ovary cells expressing the CysLT1 receptor also exhibit MK571-sensitive calcium flux to all three agonists. Both hMCs and CysLT1 transfectants stimulated with UDP are desensitized to LTC4, but only partially to LTD4. Priming of hMCs with IL-4 for 5 days enhances their sensitivity to each agonist, but preferentially lowers their threshold for activation by LTC4 and UDP (≈3 log10-fold shifts in dose-response for each agonist) over LTD4 (1.3 log10-fold shift), without altering CysLT1 receptor mRNA or surface protein expression, implying the likely induction of a second receptor with CysLT1-like dual ligand specificity. hMCs thus express the CysLT1 receptor, and possibly a closely related IL-4-inducible receptor, which mediate dual activation responses to cys-LTs and UDP, providing an apparent intersection linking the inflammatory and neurogenic elements of bronchial asthma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superantigens, such as toxic shock syndrome toxin 1 (TSST-1), have been implicated in the pathogenesis of several autoimmune and allergic diseases associated with polyclonal B cell activation. In this report, we studied the in vitro effects of TSST-1 on B cell activation. We show herein that TSST-1 produced antagonistic effects on Ig synthesis by peripheral blood mononuclear cells (PBMC) from normal subjects, depending on the concentration used; Ig production was inhibited at 1000 pg/ml (P < 0.01) and enhanced at 1 and 0.01 pg/ml (P < 0.01) of toxin. Cultures of PBMC were then examined for morphologic features and DNA fragmentation characteristic for apoptosis. B cells exhibited a significantly higher (P < 0.01) incidence of apoptosis after stimulation with 1000 pg/ml of TSST-1 compared with 1 or 0.01 pg/ml of toxin or medium alone. Abundant expression of Fas, a cell surface protein that mediates apoptosis, was detected on B cells after stimulation with 1000 pg/ml of TSST-1 and was significantly higher on B cells undergoing apoptosis than on live cells (P = 0.01). Additionally, increased Fas expression and B cell death occurred at concentrations of TSST-1 inducing the production of high amounts of gamma interferon (IFN-gamma), and both events could be blocked by neutralizing anti-IFN-gamma antibody. These findings suggest that high concentrations of TSST-1 can induce IFN-gamma-dependent B cell apoptosis, whereas at low concentrations it stimulates Ig synthesis by PBMC from normal subjects. These findings support the concept that staphylococcal toxins have a role in B cell hyperactivity in autoimmunity and allergy.