52 resultados para malignant melanoma


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer is a disease characterized by defects in growth control, and tumor cells often display abnormal patterns of cellular differentiation. The combination of recombinant human fibroblast interferon and the antileukemic agent mezerein corrects these abnormalities in cultured human melanoma cells resulting in irreversible growth arrest and terminal differentiation. Subtraction hybridization identifies a melanoma differentiation associated gene (mda-7) with elevated expression in growth arrested and terminally differentiated human melanoma cells. Colony formation decreases when mda-7 is transfected into human tumor cells of diverse origin and with multiple genetic defects. In contrast, the effects of mda-7 on growth and colony formation in transient transfection assays with normal cells, including human mammary epithelial, human skin fibroblast, and rat embryo fibroblast, is quantitatively less than that found with cancer cells. Tumor cells expressing elevated mda-7 display suppression in monolayer growth and anchorage independence. Infection with a recombinant type 5 adenovirus expressing antisense mda-7 eliminates mda-7 suppression of the in vitro growth and transformed phenotype. The ability of mda-7 to suppress growth in cancer cells not expressing or containing defects in both the retinoblastoma (RB) and p53 genes indicates a lack of involvement of these critical tumor suppressor elements in mediating mda-7-induced growth inhibition. The lack of protein homology of mda-7 with previously described growth suppressing genes and the differential effect of this gene on normal versus cancer cells suggests that mda-7 may represent a new class of cancer growth suppressing genes with antitumor activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five to ten percent of individuals with melanoma have another affected family member, suggesting familial predisposition. Germ-line mutations in the cyclin-dependent kinase (CDK) inhibitor p16 have been reported in a subset of melanoma pedigrees, but their prevalence is unknown in more common cases of familial melanoma that do not involve large families with multiple affected members. We screened for germ-line mutations in p16 and in two other candidate melanoma genes, p19ARF and CDK4, in 33 consecutive patients treated for melanoma; these patients had at least one affected first or second degree relative (28 independent families). Five independent, definitive p16 mutations were detected (18%, 95% confidence interval: 6%, 37%), including one nonsense, one disease-associated missense, and three small deletions. No mutations were detected in CDK4. Disease-associated mutations in p19ARF, whose transcript is derived in part from an alternative codon reading frame of p16, were only detected in patients who also had mutations inactivating p16. We conclude that germ-line p16 mutations are present in a significant fraction of individuals who have melanoma and a positive family history.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human antimelanoma antibody V86 was cloned from a single-chain Fv molecule (scFv) fusion phage library displaying the heavy chain variable domain (VH) and light chain variable domain (VL.) repertoire of a melanoma patient immunized with genetically-modified autologous tumor cells. Previous ELISA tests for binding of the V86 fusion phage to a panel of human metastatic melanoma and carcinoma cell lines and primary cultures of normal melanocytes, endothelial, and fibroblast cells showed that measurable binding occurred only to the melanoma cells. In this communication, the strict specificity of V86 for melanoma cells was confirmed by immunohistochemical staining tests with cultured cells and frozen tissue sections. The V86 fusion phage stained melanoma cell lines but did not stain carcinoma cell lines or cultured normal cells; V86 also stained specifically the melanoma cells in sections of metastatic tissue but did not stain any of the cells in sections from normal skin, lung, and kidney or from metastatic colon and ovarian carcinomas and a benign nevus. An unexpected finding is that V86 contains a complete VH domain but only a short segment of a VL, domain, which terminates before the CDR1 region. This VL deletion resulted from the occurrence in the VL cDNA of a restriction site, which was cleaved during construction of the scFv library. Thus V86 is essentially a VH antibody. The effect of adding a VI. domain to V86 was examined by constructing scFv fusion phage libraries in which V86 was coupled to Vlambda or Vkappa domains from the original scFv library of the melanoma patient and then panning the libraries against melanoma cells to enrich for the highest affinity antibody clones. None of the V86-Vlambda clones showed significant binding to melanoma cells in ELISA tests; although binding occurred with most of the V86-Vkappa clones, it was generally weaker than the binding of V86. These results indicate that most of the VL domains in the original scFv library reduce or eliminate the affinity of V86 for melanoma cells. Accordingly, VH libraries could provide access to anti-tumor antibodies that might not be detected in scFv or Fab libraries because of the incompatibility of most randomly paired VH and VL, domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two structurally unrelated chemicals, aflatoxin B1 and propane sultone, transformed human foreskin cells to a stage of anchorage-independent growth. Isolation from agar and repopulation in monolayer culture of these transformed cells was followed by transfection with a cDNA library, which resulted in cells that exhibited an altered epithelioid morphology. Chemically transformed/nontransfected cells and transfected normal cells did not undergo a significant morphological change. These epithelioid-appearing, transfected cells, when inoculated into nude mice, form progressively growing tumors. The tumors are histopathologically interpreted as carcinomas. All of the first generation tumors in the surrogate hosts exhibited characteristic rates of growth similar to those of transplants of spontaneous human tumors. In the second generation of tumor xenografts, the progressively growing tumors derived from the transfected cells exhibited a more rapid rate of growth. Southern analysis and reverse transcription PCR confirmed that a 1.3-kb genetic element was integrated into the genome and was actively being transcribed. Examination of the metaphase chromosomes in normal human cells revealed that the genetic element responsible for this conversion was located at site 31-32 of the q arm of chromosome 7. The DNA sequence of this 1.3-kb genetic element contains a coding region for 79 amino acids and a long 3'-untranslated region and appears to be identical to CATR1.3 isolated from tumors produced by methyl methanesulfonate-converted, nontransplantable human tumor cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroblastoma (NB) is characterized by the second highest spontaneous regression of any human malignant disorder, a phenomenon that remains to be elucidated. In this study, a survey of 94 normal human adult sera revealed a considerable natural humoral cytotoxicity against human NB cell lines in approximately one-third of the tested sera of both genders. Specific cell killing by these sera was in the range of 40% to 95%. Serum cytotoxicity was dependent on an intact classical pathway of complement. By several lines of evidence, IgM antibodies were identified as the cytotoxic factor in the sera. Further analyses revealed that a 260-kDa protein was recognized by natural IgM of cytotoxic sera in Western blots of NB cell extracts. The antigen was expressed on the surface of seven human NB cell lines but not on human melanoma or other control tumor cell lines derived from kidney, pancreas, colon, bone, skeletal muscle, lymphatic system, and bone marrow. Furthermore, no reactivity was observed with normal human fibroblasts, melanocytes, and epidermal keratinocytes. The antigen was expressed in vivo as detected by immunohistochemistry in both the tumor of a NB patient and NB tumors established in nude rats from human NB cell lines. Most interestingly, the IgM anti-NB antibody was absent from the sera of 11 human NB patients with active disease. The anti-NB IgM also could not be detected in tumor tissue obtained from a NB patient. Collectively, our data suggest the existence of a natural humoral immunological tumor defense mechanism, which could account for the in vivo phenomenon of spontaneous NB tumor regression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibody-cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody-interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cgamma1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumor-specific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumor-specific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malignant mesotheliomas (MMs) are aggressive tumors that develop most frequently in the pleura of patients exposed to asbestos. In contrast to many other cancers, relatively few molecular alterations have been described in MMs. The most frequent numerical cytogenetic abnormality in MMs is loss of chromosome 22. The neurofibromatosis type 2 gene (NF2) is a tumor suppressor gene assigned to chromosome 22q which plays an important role in the development of familial and spontaneous tumors of neuroectodermal origin. Although MMs have a different histogenic derivation, the frequent abnormalities of chromosome 22 warranted an investigation of the NF2 gene in these tumors. Both cDNAs from 15 MM cell lines and genomic DNAs from 7 matched primary tumors were analyzed for mutations within the NF2 coding region. NF2 mutations predicting either interstitial in-frame deletions or truncation of the NF2-encoded protein (merlin) were detected in eight cell lines (53%), six of which were confirmed in primary tumor DNAs. In two samples that showed NF2 gene transcript alterations, no genomic DNA mutations were detected, suggesting that aberrant splicing may constitute an additional mechanism for merlin inactivation. These findings implicate NF2 in the oncogenesis of primary MMs and provide evidence that this gene can be involved in the development of tumors other than nervous system neoplasms characteristic of the NF2 disorder. In addition, unlike NF2-related tumors, MM derives from the mesoderm; malignancies of this origin have not previously been associated with frequent alterations of the NF2 gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oncogenic potential of human mycoplasmas was studied using cultured mouse embryo cells, C3H/10T1/2 (C3H). Mycoplasma fermentans and Mycoplasma penetrans, mycoplasmas found in unusually high frequencies among patients with AIDS, were examined. Instead of acute transformation, a multistage process in promotion and progression of malignant cell transformation with long latency was noted; after 6 passages (1 wk per passage) of persistent infection with M. fermentans, C3H cells exhibited phenotypic changes with malignant characteristics that became progressively more prominent with further prolonged infection. Up to at least the 11th passage, all malignant changes were reversible if mycoplasmas were eradicated by antibiotic treatment. Further persistent infection with the mycoplasmas until 18 passages resulted in an irreversible form of transformation that included the ability to form tumors in animals and high soft agar cloning efficiency. Whereas chromosomal loss and translocational changes in C3H cells infected by either mycoplasma during the reversible stage were not prominent, the onset of the irreversible phase of transformation coincided with such karyotypic alteration. Genetic instability--i.e., prominent chromosomal alteration of permanently transformed cells--was most likely caused by mutation of a gene(s) responsible for fidelity of DNA replication or repair. Once induced, chromosomal alterations continued to accumulate both in cultured cells and in animals without the continued presence of the transforming microbes. Mycoplasma-mediated multistage oncogenesis exhibited here shares many characteristics found in the development of human cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recruitment of antigen-specific tumor-infiltrating lymphocytes (TILs) is a major goal for immunotherapy of malignant tumours. We now describe that T-cell-activating superantigens targeted to a tumor by monoclonal antibodies induced large numbers of pseudospecific TILs and eradication of micrometastases. As a model for tumor micrometastases, syngeneic B16 melanoma cells transfected with the human colon carcinoma antigen C215 were injected intravenously into C57BL/6 mice and therapy with an anti-C215 Fab fragment-staphylococcal enterotoxin A (C215Fab-SEA) fusion protein reacting with the C215 antigen was initiated when visible lung metastases were established. More than 90% reduction of the number of lung metastases was observed when mice carrying 5-day-old established lung metastases were treated with C215Fab-SEA. The antitumor effect of C215Fab-SEA was shown to be T-cell-dependent since no therapeutic effect was seen in T-cell-deficient nude mice. Depletion of T-cell subsets by injection of monoclonal antibody demonstrated that CD8+ cells were the most prominent effector cells although some contribution from CD4+ cells was also noted. C215Fab-SEA treatment induced massive tumor infiltration of CD4+ and CD8+ T cells, while only scattered T cells were observed in untreated tumors. SEA treatment alone induced a slight general inflammatory response in the lung parenchyme, but no specific accumulation of T cells was seen in the tumor. TILs induced by C215Fab-SEA were mainly CD8+ but a substantial number of CD4+ cells were also present. Immunohistochemical analysis showed strong production of the tumoricidal cytokines tumor necrosis factor alpha and interferon gamma in the tumor. Thus, the C215Fab-SEA fusion protein targets effector T lymphocytes to established tumors in vivo and provokes a strong local antitumor immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone marrow and peripheral blood leukocytes from 19 leukemia patients were found to contain telomerase activity detectable by a PCR-based assay. Telomerase was also detectable in nonmalignant bone marrow and peripheral blood leukocytes from normal donors, including fractions enriched for granulocytes, T lymphocytes, and monocytes/B cells. Semiquantitative comparison revealed considerable overlap between telomerase activities in samples from normal subjects and leukemia patients, confounding evaluation of the role of telomerase in this disease. These data indicate that human telomerase is not restricted to immortal cells and suggest that the somatic expression of this enzyme may be more widespread than was previously inferred from the decline of human telomeres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein kinase C (PKC) isoenzymes are essential components of cell signaling. In this study, we investigated the regulation of PKC-alpha in murine B16 amelanotic melanoma (B16a) cells by the monohydroxy fatty acids 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] and 13(S)-hydroxyoctadecadienoic acid [13(S)-HODE]. 12(S)-HETE induced a translocation of PKC-alpha to the plasma membrane and focal adhesion plaques, leading to enhanced adhesion of B16a cells to the matrix protein fibronectin. However, 13(S)-HODE inhibited these 12(S)-HETE effects on PKC-alpha. A receptor-mediated mechanism of action for 12(S)-HETE and 13(S)-HODE is supported by the following findings. First, 12(S)-HETE triggered a rapid increase in cellular levels of diacylglycerol and inositol trisphosphate in B16a cells. 13(S)-HODE blocked the 12(S)-HETE-induced bursts of both second messengers. Second, the 12(S)-HETE-increased adhesion of B16a cells to fibronectin was sensitive to inhibition by a phospholipase C inhibitor and pertussis toxin. Finally, a high-affinity binding site (Kd = 1 nM) for 12(S)-HETE was detected in B16a cells, and binding of 12(S)-HETE to B16a cells was effectively inhibited by 13(S)-HODE (IC50 = 4 nM). In summary, our data provide evidence that regulation of PKC-alpha by 12(S)-HETE and 13(S)-HODE may be through a guanine nucleotide-binding protein-linked receptor-mediated hydrolysis of inositol phospholipids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The beta 1-6 structure of N-linked oligosaccharides, formed by beta-1,6-N-acetylglucosaminyltransferase (GnT-V), is associated with metastatic potential. We established a highly metastatic subclone, B16-hm, from low metastatic B16-F1 murine melanoma cells. The gene encoding beta-1,4-N-acetylglucosaminyltransferase (GnT-III) was introduced into the B16-hm cells, and three clones that stably expressed high GnT-III activity were obtained. In these transfectants, the affinity to leukoagglutinating phytohemagglutinin was reduced, whereas the binding to erythroagglutinating phytohemagglutinin was increased, indicating that the level of beta 1-6 structure was decreased due to competition for substrate between intrinsic GnT-V and ectopically expressed GnT-III. Lung metastasis after intravenous injection of the transfectants into syngeneic and nude mice was significantly suppressed, suggesting that the decrease in beta 1-6 structure suppressed metastasis via a mechanism independent of the murine system. These transfectants also displayed decreased invasiveness into Matrigel and inhibited cell attachment to collagen and laminin. Cell growth was not affected. Our results demonstrate a causative role for beta 1-6 branches in invasion and cell attachment in the extravasation stage of metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several studies have established a link between blood coagulation and cancer, and more specifically between tissue factor (TF), a transmembrane protein involved in initiating blood coagulation, and tumor metastasis. In the study reported here, a murine model of human melanoma metastasis was used for two experiments. (i) The first experiment was designed to test the effect of varying the level of TF expression in human melanoma cells on their metastatic potential. Two matched sets of cloned human melanoma lines, one expressing a high level and the other a low level of the normal human TF molecule, were generated by retroviral-mediated transfections of a nonmetastatic parental line. The metastatic potential of the two sets of transfected lines was compared by injecting the tumor cells into the tail vein of severe combined immunodeficiency (SCID) mice and later examining the lungs and other tissues for tumor development. Metastatic tumors were detected in 86% of the mice injected with the high-TF lines and in 5% of the mice injected with the low-TF lines, indicating that a high TF level promotes metastasis of human melanoma in the SCID mouse model. This TF effect on metastasis occurs with i.v.-injected melanoma cells but does not occur with primary tumors formed from s.c.-injected melanoma cells, suggesting that TF acts at a late stage of metastasis, after tumor cells have escaped from the primary site and entered the blood. (ii) The second experiment was designed to analyze the mechanism by which TF promotes melanoma metastasis. The procedure involved testing the effect on metastasis of mutations in either the extracellular or cytoplasmic domains of the transmembrane TF molecule. The extracellular mutations introduced two amino acid substitutions that inhibited initiation by TF of the blood-coagulation cascade; the cytoplasmic mutation deleted most of the cytoplasmic domain without impairing the coagulation function of TF. Several human melanoma lines expressing high levels of either of the two mutant TF molecules were generated by retroviral-mediated transfection of the corresponding TF cDNA into the nonmetastatic parental melanoma line, and the metastatic potential of each transfected line was tested in the SCID mouse model. Metastases occurred in most mice injected with the melanoma lines expressing the extracellular TF mutant but were not detected in most mice injected with the melanoma lines expressing the cytoplasmic TF mutant. Results with the extracellular TF mutant indicate that the metastatic effect of TF in the SCID mouse model does not involve products of the coagulation cascade. Results with the cytoplasmic TF mutant indicate that the cytoplasmic domain of TF is important for the metastatic effect, suggesting that the TF could transduce a melanoma cell signal that promotes metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have identified an antigen recognized on a human melanoma by autologous cytolytic T lymphocytes. It is encoded by a gene that is expressed in many normal tissues. Remarkably, the sequence coding for the antigenic peptide is located across an exon-intron junction. A point mutation is present in the intron that generates an amino acid change that is essential for the recognition of the peptide by the anti-tumor cytotoxic T lymphocytes. This observation suggests that the T-cell-mediated surveillance of the integrity of the genome may extend to some intronic regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human melanoma cells can process the MAGE-1 gene product and present the processed nonapeptide EADPTGHSY on their major histocompatibility complex class I molecules, HLA-A1, as a determinant for cytolytic T lymphocytes (CTLs). Considering that autologous antigen presenting cells (APCs) pulsed with the synthetic nonapeptide might, therefore, be immunogenic, melanoma patients whose tumor cells express the MAGE-1 gene and who are HLA-A1+ were immunized with a vaccine made of cultured autologous APCs pulsed with the synthetic nonapeptide. Analyses of the nature of the in vivo host immune response to the vaccine revealed that the peptide-pulsed APCs are capable of inducing autologous melanoma-reactive and the nonapeptide-specific CTLs in situ at the immunization site and at distant metastatic disease sites.