229 resultados para lymphocyte antigen
Resumo:
Transforming growth factor beta 1 (TGF beta 1)-null mice die fro complications due to an early-onset multifocal inflammatory disorder. We show here that cardiac cells are hyperproliferative and that intercellular adhesion molecule 1 (ICAM-1) is elevated. To determine which phenotypes are primarily caused by a deficiency in TGF beta 1 from those that are secondary to inflammation, we applied immunosuppressive therapy and genetic combination with the severe combined immunodeficiency (SCID) mutation to inhibit the inflammatory response. Treatment with antibodies to the leukocyte function-associated antigen 1 doubled longevity, reduced inflammation, and delayed heart cell proliferation. TGF beta 1-null SCID mice displayed no inflammation or cardiac cell proliferation, survived to adulthood, and exhibited normal major histocompatibility complex II (MHC II) and ICAM-1 levels. TGF beta 1-null pups born to a TGF beta 1-null SCID mother presented no gross congenital heart defects, indicating that TGF beta 1 alone does not play an essential role in heart development. These results indicate that lymphocytes are essential for the inflammatory response, cardiac cell proliferation, and elevated MHC II and ICAM-1 expression, revealing a vital role for TGF beta 1 in regulating lymphocyte proliferation and activation, which contribute to the maintenance of self tolerance.
Resumo:
Using transgenic mice that replicate the hepatitis B virus (HBV) genome, we recently demonstrated that class I-restricted, hepatitis B surface antigen-specific cytotoxic T lymphocytes (CTLs) can noncytolytically eliminate HBV pregenomic and envelope RNA transcripts from the hepatocyte. We now demonstrate that the steady-state content of these viral transcripts is profoundly reduced in the nucleus and cytoplasm of CTL-activated hepatocytes, but their transcription rates are only slightly reduced. Additionally, we demonstrate that transcripts covering the HBV X coding region are resistant to downregulation by the CTL. These results imply the existence of CTL-inducible hepatocellular factors that interact with a discrete element(s) between nucleotides 3157 and 1239 within the viral pregenomic and envelope transcripts and mediate their degradation, thus converting the hepatocyte from a passive victim to an active participant in the host response to HBV infection.
Resumo:
The phenotypes of CD19-deficient (CD19-/-) mice, and human CD19-transgenic (hCD19TG) mice that overexpress CD19 indicate that CD19 is a response regulator of B-lymphocyte surface receptor signaling. To further characterize the function of CD19 during B-cell differentiation, humoral immune responses to a T-cell-independent type 1 [trinitrophenyl-lipopolysaccharide (TNP-LPS)], a T-cell-independent type 2 [dinitrophenyl (DNP)-Ficoll], and a T-cell-dependent [DNP-keyhole limpet hemocyanin (KLH)] antigen were assessed in CD19-/- and hCD19TG mice. B cells from CD19-/- mice differentiated and underwent immunoglobulin isotype switching in vitro in response to mitogens and cytokines. In vivo, CD19-/- mice generated humoral responses to TNP-LPS and DNP-KLH that were dramatically lower than those of wild-type littermates. Surprisingly, the humoral response to DNP-Ficoll was significantly greater in CD19-/- mice. In contrast, hCD19TG mice were hyperresponsive to TNP-LPS and DNP-KLH immunization but were hyporesponsive to DNP-Ficoll. These results demonstrate that CD19 is not required for B-cell differentiation and isotype switching but serves as a response regulator which modulates B-cell differentiation. Since humoral responses to both T-cell-dependent and T-cell-independent antigens were similarly affected by alterations in CD19 expression, these differences are most likely to result from intrinsic changes in B-cell function rather than from the selective disruption of B-cell interactions with T cells.
Resumo:
Intramuscular injection of plasmid DNA expression vectors encoding the three envelope proteins of the hepatitis B virus (HBV) induced humoral responses in C57BL/6 mice specific to several antigenic determinants of the viral envelope. The first antibodies appeared within 1-2 weeks after injection of DNA and included antibodies of the IgM isotype. Over the next few weeks, an IgM to IgG class switch occurred, indicating helper T-lymphocyte activity. Peak IgG titers were reached by 4-8 weeks after a single DNA injection and were maintained for at least 6 months without further DNA injections. The antibodies to the envelope proteins reacted with group- and subtype-specific antigenic determinants of the HBV surface antigen (HBsAg). Expression vectors encoding the major (S) and middle (preS2 plus S) envelope proteins induced antibodies specific to the S protein and preS2 domain, and preS2 antibodies were prominent at early time points. In general, the expression vectors induced humoral responses in mice that mimic those observed in humans during the course of natural HBV infection.
Growth factors can enhance lymphocyte survival without committing the cell to undergo cell division.
Resumo:
Growth factors have been defined by their ability to promote the proliferative expansion of receptor-bearing cells. For example, antigen-activated T cells expressing the alpha beta gamma form of the interleukin 2 (IL-2) receptor will proliferate in response to IL-2. In contrast, resting T cells, which express the IL-2 receptor beta and gamma chains, do not proliferate in response to IL-2. We demonstrate that the survival of resting T cells following gamma irradiation is greatly enhanced by pretreatment with IL-2. The radioprotective effect of IL-2 is dose dependent, does not result from the induction of cell proliferation, and does not require expression of the IL-2 receptor alpha chain. Thus, the beta gamma IL-2 receptor expressed on resting T cells can transduce signals that promote cell survival without committing the T cell to undergo cell division. IL-4 and IL-7, but not IL-1, IL-3, or IL-6, were also found to enhance the survival of quiescent T cells following gamma irradiation. Thus, certain growth factor-receptor interactions can serve to maintain cell viability in a manner that is independent of their ability to initiate or maintain cell proliferation. These data may have important implications for the use of growth factors in patients being treated with radiation and/or chemotherapy.
Resumo:
Differential expression of surface markers can frequently be used to distinguish functional subsets of T cells, yet a surface phenotype unique to T cells induced into an anergic state has not been described. Here, we report that CD4 T cells rendered anergic in vivo by superantigen can be identified by loss of the 6C10 T cell marker. Inoculation of Vβ8.1 T cell antigen receptor (TCR) transgenic mice with a Vβ8.1-reactive minor lymphocyte-stimulating superantigen (Mls-1a) induces tolerance to Mls-1a by clonal anergy. CD4 lymph node T cells from Mls-1a inoculated transgenic mice enriched for the 6C10− phenotype neither proliferate nor produce interleukin-2 upon TCR engagement, whereas 6C10+ CD4 T cells retain responsiveness. Analysis of T cell memory markers demonstrate that 6C10− T cells remain 3G11hi but express heterogeneous levels of CD45RB, CD62L, CD44, and the CD69 early activation marker, suggesting that T cells at various degrees of activation can be functionally anergic. These studies demonstrate that anergic T cells can be purified based on 6C10 expression permitting examination of issues concerning biochemical and biological features specific to T cell anergy.
Resumo:
Antigen presentation by major histocompatibility complex (MHC) class II molecules requires the participation of different proteases in the endocytic route to degrade endocytosed antigens as well as the MHC class II-associated invariant chain (Ii). Thus far, only the cysteine protease cathepsin (Cat) S appears essential for complete destruction of Ii. The enzymes involved in degradation of the antigens themselves remain to be identified. Degradation of antigens in vitro and experiments using protease inhibitors have suggested that Cat B and Cat D, two major aspartyl and cysteine proteases, respectively, are involved in antigen degradation. We have analyzed the antigen-presenting properties of cells derived from mice deficient in either Cat B or Cat D. Although the absence of these proteases provoked a modest shift in the efficiency of presentation of some antigenic determinants, the overall capacity of Cat B−/− or Cat D−/− antigen-presenting cells was unaffected. Degradation of Ii proceeded normally in Cat B−/− splenocytes, as it did in Cat D−/− cells. We conclude that neither Cat B nor Cat D are essential for MHC class II-mediated antigen presentation.
Resumo:
Antibody single-chain Fv fragment (scFv) molecules that are specific for fluorescein have been engineered with a C-terminal cysteine for a directed immobilization on a flat gold surface. Individual scFv molecules can be identified by atomic force microscopy. For selected molecules the antigen binding forces are then determined by using a tip modified with covalently immobilized antigen. An scFv mutant of 12% lower free energy for ligand binding exhibits a statistically significant 20% lower binding force. This strategy of covalent immobilization and measuring well separated single molecules allows the characterization of ligand binding forces in molecular repertoires at the single molecule level and will provide a deeper insight into biorecognition processes.
Resumo:
Developmental commitment involves activation of lineage-specific genes, stabilization of a lineage-specific gene expression program, and permanent inhibition of inappropriate characteristics. To determine how these processes are coordinated in early T cell development, the expression of T and B lineage-specific genes was assessed in staged subsets of immature thymocytes. T lineage characteristics are acquired sequentially, with germ-line T cell antigen receptor-β transcripts detected very early, followed by CD3ɛ and terminal deoxynucleotidyl transferase, then pTα, and finally RAG1. Only RAG1 expression coincides with commitment. Thus, much T lineage gene expression precedes commitment and does not depend on it. Early in the course of commitment to the T lineage, thymocytes lose the ability to develop into B cells. To understand how this occurs, we also examined expression of well defined B lineage-specific genes. Although λ5 and Ig-α are not expressed, the μ0 and Iμ transcripts from the unrearranged IgH locus are expressed early, in distinct patterns, then repressed just before RAG1 expression. By contrast, RNA encoding the B cell receptor component Ig-β was found to be transcribed in all immature thymocyte subpopulations and throughout most thymocyte differentiation. Ig-β expression is down-regulated only during positive selection of CD4+CD8– cells. Thus several key participants in the B cell developmental program are expressed in non-B lineage-committed cells, and one is maintained even through commitment to an alternative lineage, and repressed only after extensive T lineage differentiation. The results show that transcriptional activation of “lymphocyte-specific” genes can occur in uncommitted precursors, and that T lineage commitment is a composite of distinct positive and negative regulatory events.
Resumo:
P-glycoprotein (MDR-1) is a well-known transporter that mediates efflux of chemotherapeutic agents from the intracellular milieu and thereby contributes to drug resistance. MDR-1 also is expressed by nonmalignant cells, including leukocytes, but physiologic functions for MDR-1 are poorly defined. Using an initial screening assay that included >100 mAbs, we observed that neutralizing mAbs MRK16, UIC2, and 4E3 against MDR-1 specifically and potently blocked basal-to-apical transendothelial migration of mononuclear phagocytes, a process that may mimic their migration into lymphatic vessels. Antagonists of MDR-1 then were used in a model of authentic lymphatic clearance. In this model, antigen-presenting dendritic cells (DC) migrate out of explants of cultured human skin and into the culture medium via dermal lymphatic vessels. DC and T cells derived from skin expressed MDR-1 on their surfaces. Addition of anti-MDR-1 mAbs MRK16, UIC2, or the MDR-1 antagonist verapamil to skin explants at the onset of culture inhibited the appearance of DC, and accompanying T cells, in the culture medium by approximately 70%. Isotype-matched control mAbs against other DC molecules including CD18, CD31, and major histocompatibility complex I did not block. In the presence of MDR-1 antagonists, epidermal DC were retained in the epidermis, in contrast to control conditions. In summary, this work identifies a physiologic function for MDR-1 during the mobilization of DC and begins to elucidate how these critical antigen-presenting cells migrate from the periphery to lymph nodes to initiate T lymphocyte-mediated immunity.
Resumo:
Bordetella pertussis secretes a calmodulin-activated adenylate cyclase toxin, CyaA, that is able to deliver its N-terminal catalytic domain (400-aa residues) into the cytosol of eukaryotic target cells, directly through the cytoplasmic membrane. We have previously shown that CyaA can be used as a vehicle to deliver T cell epitopes, inserted within the catalytic domain of the toxin, into antigen-presenting cells and can trigger specific class I-restricted CD8+ cytotoxic T cell responses in vivo. Here, we constructed a series of recombinant toxins harboring at the same insertion site various peptide sequences of 11–25 amino acids, corresponding to defined CD8+ T cell epitopes and differing in the charge of the inserted sequence. We show that inserted peptide sequences containing net negative charges (−1 or −2) decreased or completely blocked (charge of −4) the internalization of the toxin into target cells in vitro and abolished the induction of cytotoxic T cell responses in vivo. The blocking of translocation due to the inserted acidic sequences can be relieved by appropriate mutations in the flanking region of CyaA that counterbalance the inserted charges. Our data indicate that (i) the electrostatic charge of the peptides inserted within the catalytic domain of CyaA is critical for its translocation into eukaryotic cells and (ii) the delivery of T cell epitopes into the cytosol of antigen-presenting cells by recombinant CyaA toxins is essential for the in vivo stimulation of specific cytotoxic T cells. These findings will help to engineer improved recombinant CyaA vectors able to stimulate more efficiently cellular immunity.
Resumo:
There are two major mechanisms reported to prevent the autoreactivity of islet-specific CD8+ T cells: ignorance and tolerance. When ignorance is operative, naïve autoreactive CD8+ T cells ignore islet antigens and recirculate without causing damage, unless activated by an external stimulus. In the case of tolerance, CD8+ T cells are deleted. Which factor(s) contributes to each particular outcome was previously unknown. Here, we demonstrate that the concentration of self antigen determines which mechanism operates. When ovalbumin (OVA) was expressed at a relatively low concentration in the pancreatic islets of transgenic mice, there was no detectable cross-presentation, and the CD8+ T cell compartment remained ignorant of OVA. In mice expressing higher doses of OVA, cross-presentation was detectable and led to peripheral deletion of OVA-specific CD8+ T cells. When cross-presentation was prevented by reconstituting the bone marrow compartment with cells incapable of presenting OVA, deletional tolerance was converted to ignorance. Thus, the immune system uses two strategies to avoid CD8+ T cell-mediated autoimmunity: for high dose antigens, it deletes autoreactive T cells, whereas for lower dose antigens, it relies on ignorance.
Resumo:
Defects in lymphocyte apoptosis may lead to autoimmune disorders and contribute to the pathogenesis of type 1 diabetes. Lymphocytes of nonobese diabetic (NOD) mice, an animal model of autoimmune diabetes, have been found resistant to various apoptosis signals, including the alkylating drug cyclophosphamide. Using an F2 intercross between the apoptosis-resistant NOD mouse and the apoptosis-susceptible C57BL/6 mouse, we define a major locus controlling the apoptosis-resistance phenotype and demonstrate its linkage (logarithm of odds score = 3.9) to a group of medial markers on chromosome 1. The newly defined gene cannot be dissociated from Ctla4 and Cd28 and in fact marks a 20-centimorgan region encompassing Idd5, a previously postulated diabetes susceptibility locus. Interestingly, we find that the CTLA-4 (cytotoxic T lymphocyte-associated antigen 4) and the CD28 costimulatory molecules are defectively expressed in NOD mice, suggesting that one or both of these molecules may be involved in the control of apoptosis resistance and, in turn, in diabetes susceptibility.
Resumo:
Two mouse monoclonal anti-anti-idiotopic antibodies (anti-anti-Id, Ab3), AF14 and AF52, were prepared by immunizing BALB/c mice with rabbit polyclonal anti-idiotypic antibodies (anti-Id, Ab2) raised against antibody D1.3 (Ab1) specific for the antigen hen egg lysozyme. AF14 and AF52 react with an “internal image” monoclonal mouse anti-Id antibody E5.2 (Ab2), previously raised against D1.3, with affinity constants (1.0 × 109 M−1 and 2.4 × 107 M−1, respectively) usually observed in secondary responses against protein antigens. They also react with the antigen but with lower affinity (1.8 × 106 M−1 and 3.8 × 106 M−1). This pattern of affinities for the anti-Id and for the antigen also was displayed by the sera of the immunized mice. The amino acid sequences of AF14 and AF52 are very close to that of D1.3. In particular, the amino acid side chains that contribute to contacts with both antigen and anti-Id are largely conserved in AF14 and AF52 compared with D1.3. Therapeutic immunizations against different pathogenic antigens using anti-Id antibodies have been proposed. Our experiments show that a response to an anti-Id immunogen elicits anti-anti-Id antibodies that are optimized for binding the anti-Id antibodies rather than the antigen.
Resumo:
The transporter associated with antigen processing (TAP) is essential for the transport of antigenic peptides across the membrane of the endoplasmic reticulum. In addition, TAP interacts with major histocompatibility complex class I heavy chain (HC)/β2-microglobulin (β2-m) dimers. We have cloned a cDNA encoding a TAP1/2-associated protein (TAP-A) corresponding in size and biochemical properties to tapasin, which was recently suggested to be involved in class I–TAP interaction (Sadasivan, B., Lehner, P. J., Ortmann, B., Spies, T. & Cresswell, P. (1996) Immunity 5, 103–114). The cDNA encodes a 448-residue-long ORF, including a signal peptide. The protein is predicted to be a type I membrane glycoprotein with a cytoplasmic tail containing a double-lysine motif (-KKKAE-COOH) known to maintain membrane proteins in the endoplasmic reticulum. Immunoprecipitation with anti-TAP1 or anti-TAP-A antisera demonstrated a consistent and stoichiometric association of TAP-A with TAP1/2. Class I HC and β2-m also were coprecipitated with these antisera, indicating the presence of a pentameric complex. In pulse–chase experiments, class I HC/β2-m rapidly dissociated from TAP1/2-TAP-A. We propose that TAP is a trimeric complex consisting of TAP1, TAP2, and TAP-A that interacts transiently with class I HC/β2-m. In peptide-binding assays using cross-linkable peptides and intact microsomes, TAP-A bound peptides only in the presence of ATP whereas binding of peptides to TAP1/2 was ATP-independent. This suggests a direct role of TAP-A in peptide loading onto class I HC/β2-m dimer.