52 resultados para immobilized inulinase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The actin cytoskeleton plays a significant role in changes of cell shape and motility, and interactions between the actin filaments and the cell membrane are crucial for a variety of cellular processes. Several adaptor proteins, including talin, maintain the cytoskeleton-membrane linkage by binding to integral membrane proteins and to the cytoskeleton. Layilin, a recently characterized transmembrane protein with homology to C-type lectins, is a membrane-binding site for talin in peripheral ruffles of spreading cells. To facilitate studies of layilin's function, we have generated a layilin-Fc fusion protein comprising the extracellular part of layilin joined to human immunoglobulin G heavy chain and used this chimera to identify layilin ligands. Here, we demonstrate that layilin-Fc fusion protein binds to hyaluronan immobilized to Sepharose. Microtiter plate-binding assays, coprecipitation experiments, and staining of sections predigested with different glycosaminoglycan-degrading enzymes and cell adhesion assays all revealed that layilin binds specifically to hyaluronan but not to other tested glycosaminoglycans. Layilin's ability to bind hyaluronan, a ubiquitous extracellular matrix component, reveals an interesting parallel between layilin and CD44, because both can bind to cytoskeleton-membrane linker proteins through their cytoplasmic domains and to hyaluronan through their extracellular domains. This parallelism suggests a role for layilin in cell adhesion and motility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dimeric intercellular adhesion molecule-1 (ICAM-1) binds more efficiently to lymphocyte function-associated antigen-1 (LFA-1) than monomeric ICAM-1. However, it is unknown whether dimerization enhances binding simply by providing two ligand-binding sites and thereby increasing avidity, or whether it serves to generate a single “fully competent” LFA-1-binding surface. Domain 1 of ICAM-1 contains both the binding site for LFA-1, centered on residue E34, and a homodimerization interface. Whether the LFA-1-binding site extends across the homodimerization interface has not been tested. To address this question, we constructed four different heterodimeric soluble forms of ICAM-1 joined at the C terminus via an α-helical coiled coil (ACID-BASE). These heterodimeric ICAM-1 constructs include, (i) E34/E34 (two intact LFA-1-binding sites), (ii) E34/K34 (one disrupted LFA-1-binding site), (iii) E34/ΔD1–2 (one deleted LFA-1-binding site), and (iv) K34/K34 (two disrupted LFA-1-binding sites). Cells bearing activated LFA-1 bound similarly to surfaces coated with either E34/K34 or E34/ΔD1–2 and with an ≈2-fold reduction in efficiency compared with E34/E34, suggesting that D1 dimerization, which is precluded in E34/ΔD1-D2, is not necessary for optimal LFA-1 binding. Furthermore, BIAcore (BIAcore, Piscataway, NJ) affinity measurements revealed that soluble open LFA-1 I domain bound to immobilized soluble ICAM-1, E34/E34, E34/K34, and E34/ΔD1-D2 with nearly identical affinities. These studies demonstrate that a single ICAM-1 monomer, not dimeric ICAM-1, represents the complete, “fully competent” LFA-1-binding surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Higher plants express several isoforms of vacuolar and cell wall invertases (CWI), some of which are inactivated by inhibitory proteins at certain stages of plant development. We have purified an apoplasmic inhibitor (INH) of tobacco (Nicotiana tabacum) CWI to homogeneity. Based on sequences from tryptic fragments, we have isolated a full-length INH-encoding cDNA clone (Nt-inh1) via a reverse transcriptase-polymerase chain reaction. Southern-blot analysis revealed that INH is encoded by a single- or low-copy gene. Comparison with expressed sequence tag clones from Arabidopsis thaliana and Citrus unshiu indicated the presence of Nt-inh1-related proteins in other plants. The recombinant Nt-inh1-encoded protein inhibits CWI from tobacco and Chenopodium rubrum suspension-cultured cells and vacuolar invertase from tomato (Lycopersicon esculentum) fruit, whereas yeast invertase is not affected. However, only in the homologous system is the inhibition modulated by the concentration of Suc as previously shown for INH isolated from tobacco cells. Highly specific binding of INH to CWI could be shown by affinity chromatography of a total cell wall protein fraction on immobilized recombinant Nt-inh1 protein. RNA-blot analysis of relative transcript ratios for Nt-inh1 and CWI in different parts of adult tobacco plants revealed that the expression of both proteins is not always coordinate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein-protein interactions typically are characterized by highly specific interfaces that mediate binding with precisely tuned affinities. Binding of the Escherichia coli cochaperonin GroES to chaperonin GroEL is mediated, at least in part, by a mobile polypeptide loop in GroES that becomes immobilized in the GroEL/GroES/nucleotide complex. The bacteriophage T4 cochaperonin Gp31 possesses a similar highly flexible polypeptide loop in a region of the protein that shows low, but significant, amino acid similarity with GroES and other cochaperonins. When bound to GroEL, a synthetic peptide representing the mobile loop of either GroES or Gp31 adopts a characteristic bulged hairpin conformation as determined by transferred nuclear Overhauser effects in NMR spectra. Thermodynamic considerations suggest that flexible disorder in the cochaperonin mobile loops moderates their affinity for GroEL to facilitate cycles of chaperonin-mediated protein folding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integrins are major two-way signaling receptors responsible for the attachment of cells to the extracellular matrix and for cell-cell interactions that underlie immune responses, tumor metastasis, and progression of atherosclerosis and thrombosis. We report the structure-function analysis of the cytoplasmic tail of integrin beta 3 (glycoprotein IIla) based on the cellular import of synthetic peptide analogs of this region. Among the four overlapping cell-permeable peptides, only the peptide carrying residues 747-762 of the carboxyl-terminal segment of integrin beta 3 inhibited adhesion of human erythroleukemia (HEL) cells and of human endothelial cells (ECV) 304 to immobilized fibrinogen mediated by integrin beta 3 heterodimers, alpha IIb beta 3, and alpha v beta 3, respectively. Inhibition of adhesion was integrin-specific because the cell-permeable beta 3 peptide (residues 747-762) did not inhibit adhesion of human fibroblasts mediated by integrin beta 1 heterodimers. Conversely, a cell-permeable peptide representing homologous portion of the integrin beta 1 cytoplasmic tail (residues 788-803) inhibited adhesion of human fibroblasts, whereas it was without effect on adhesion of HEL or ECV 304 cells. The cell-permeable integrin beta 3 peptide (residues 747-762) carrying a known loss-of-function mutation (Ser752Pro) responsible for the genetic disorder Glanzmann thrombasthenia Paris I did not inhibit cell adhesion of HEL or ECV 304 cells, whereas the beta 3 peptide carrying a Ser752Ala mutation was inhibitory. Although Ser752 is not essential, Tyr747 and Tyr759 form a functionally active tandem because conservative mutations Tyr747Phe or Tyr759Phe resulted in a nonfunctional cell permeable integrin beta 3 peptide. We propose that the carboxyl-terminal segment of the integrin beta 3 cytoplasmic tail spanning residues 747-762 constitutes a major intracellular cell adhesion regulatory domain (CARD) that modulates the interaction of integrin beta 3-expressing cells with immobilized fibrinogen. Import of cell-permeable peptides carrying this domain results in inhibition "from within" of the adhesive function of these integrins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We previously demonstrated that the primary region of factor IX and IXa responsible for saturable specific binding to bovine aortic endothelial cells resides in residues 3-11 at the amino terminus of factor IX. We also demonstrated that mutations of lysine to alanine at residue 5, factor IX K5A, or valine to lysine at residue 10, factor IX V10K, resulted in a molecule unable to bind to endothelial cells. Moreover, a mutation with lysine to arginine at residue 5, factor IX K5R, resulted in a factor IX molecule with increased affinity for the endothelial cell binding site. In this paper we report that collagen IV is a strong candidate for the factor IX binding site on endothelial cells. Factor IX and factor IX K5R compete with 125I-labeled factor IX for binding to tetrameric collagen IV immobilized on microtiter plates, while factor X, factor VII, and factor IX K5A or V10K fail to compete. The Kd for wild-type factor IX binding to collagen IV in the presence of heparin was 6.8 +/- 2 nM, and the Kd for factor IX K5R was 1.1 +/- 0.2 nM, which agrees well with our previously published Kd values of 7.4 and 2.4 nM for binding of the same proteins to endothelial cells. Our working assumption is that we have identified the endothelial cell binding site and that it is collagen IV. Its physiological relevance remains to be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a search for regulatory proteins that interact with the leucine zipper motif of c-Fos in the yeast two-hybrid screen, we have identified a protein (FZA-B) that has extensive sequence similarity to SUG1 of Saccharomyces cerevisiae. Here we show that FZA-B can functionally substitute for SUG1 in yeast and that FZA-B interacts with Fos proteins in vitro through their leucine zippers. In rat liver and in HeLa cells, FZA-B is present in the 26S proteasome complex, as is c-Fos. Immobilized antibody raised against an FZA-B-specific peptide depleted peptidase activity, proteasomal proteins, FZA-B, and c-Fos from a 26S proteasome preparation. FZA-B is found predominantly in the nuclear fraction of COS cells expressing an FZA-B transgene and in the nuclear 26S proteasome of HeLa cells. We conclude that FZA-B is the mammalian homolog of SUG1 (mSug1) and that it is present in the nuclear 26S proteasome of cells. Our results suggest that mSug1 may be involved in the degradation of c-Fos and other transcription factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have demonstrated the existence of a soluble fibroblast growth factor (FGF) receptor type 1 (FGFR1) extracellular domain in the circulation and in vascular basement membranes. However, the process of FGFR1 ectodomain release from the plasma membrane is not known. Here we report that the 72-kDa gelatinase A (matrix metalloproteinase type 2, MMP2) can hydrolyze the Val368-Met369 peptide bond of the FGFR1 ectodomain, eight amino acids upstream of the transmembrane domain, thus releasing the entire extracellular domain. Similar results were obtained regardless of whether FGF was first bound to the receptor or not. The action of MMP2 abolished binding of FGF to an immobilized recombinant FGFR1 ectodomain fusion protein and to Chinese hamster ovary cells overexpressing FGFR1 The released recombinant FGFR1 ectodomain was able to bind FGF after MMP2 cleavage, suggesting that the cleaved soluble receptor maintained its FGF binding capacity. The activity of MMP2 could not be reproduced by the 92-kDa gelatinase B (MMP9) and was inhibited by tissue inhibitor of metalloproteinase type 2. These studies demonstrate that FGFR1 may be a specific target for MMP2 on the cell surface, yielding a soluble FGF receptor that may modulate the mitogenic and angiogenic activities of FGF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a further development in the technology of sequencing by hybridization to oligonucleotide microchips (SHOM) and its application to diagnostics for genetic diseases. A robot has been constructed to manufacture sequencing "microchips." The microchip is an array of oligonucleotides immobilized into gel elements fixed on a glass plate. Hybridization of the microchip with fluorescently labeled DNA was monitored in real time simultaneously for all microchip elements with a two-wavelength fluorescent microscope equipped with a charge-coupled device camera. SHOM has been used to detect beta-thalassemia mutations in patients by hybridizing PCR-amplified DNA with the microchips. A contiguous stacking hybridization technique has been applied for the detection of mutations; it can simplify medical diagnostics and enhance its reliability. The use of multicolor monitoring of contiguous stacking hybridization is suggested for large-scale diagnostics and gene polymorphism studies. Other applications of the SHOM technology are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La RNA-binding protein is a transcription termination factor that facilitates recycling of template and RNA polymerase (pol) 111. Transcription complexes preassembled on immobilized templates were depleted of pol III after a single round of RNA synthesis in the presence of heparin and sarkosyl. The isolated complexes could then be complemented with highly purified pol III and/or recombinant La to test if La is required for transcription reinitiation. VA1, 7SL, and B1 transcription complexes cannot be transcribed by supplemental pol III in single or multiple-round transcription assays unless La is also provided. La mediates concentration-dependent activation of pol III initiation and thereby controls the use of preassembled stable transcription complexes. The initiation factor activity of La augments its termination factor activity to produce a novel mechanism of activated reinitiation. A model in which La serves pol III upon transcription initiation and again at termination is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advances in screening technologies allowing the identification of growth factor receptors solely by virtue of DNA or protein sequence comparison call for novel methods to isolate corresponding ligand growth factors. The EPH-like receptor tyrosine kinase (RTK) HEK (human EPH-like kinase) was identified previously as a membrane antigen on the LK63 human pre-B-cell line and overexpression in leukemic specimens and cell lines suggested a role in oncogenesis. We developed a biosensor-based approach using the immobilized HEK receptor exodomain to detect and monitor purification of the HEK ligand. A protein purification protocol, which included HEK affinity chromatography, achieved a 1.8 X 10(6)-fold purification of an approximately 23-kDa protein from human placental conditioned medium. Analysis of specific sHEK (soluble extracellular domain of HEK) ligand interactions in the first and final purification steps suggested a ligand concentration of 40 pM in the source material and a Kd of 2-3 nM. Since the purified ligand was N-terminally blocked, we generated tryptic peptides and N-terminal amino acid sequence analysis of 7 tryptic fragments of the S-pyridylethylated protein unequivocally matched the sequence for AL-1, a recently reported ligand for the related EPH-like RTK REK7 (Winslow, J.W., Moran, P., Valverde, J., Shih, A., Yuan, J.Q., Wong, S.C., Tsai, S.P., Goddard, A., Henzel, W.J., Hefti, F., Beck, K.D., & Caras, I.W. (1995) Neuron 14, 973-981). Our findings demonstrate the application of biosensor technology in ligand purification and show that AL-1, as has been found for other ligands of the EPH-like RTK family, binds more than one receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alpha subunits of the heterotrimeric guanine nucleotide-binding proteins (G proteins) hydrolyze GTP at a rate significantly higher than do most members of the Ras family of approximatelly 20-kDa GTP-binding proteins, which depend on a GTPase-activating protein (GAP) for acceleration of GTP hydrolysis. It has been demonstrated that an inserted domain in the G-protein alpha subunit, not present in the much smaller Ras-like proteins, is responsible for this difference [Markby, D. W., Onrust, R. & Bourne, H. R. (1993) Science 262, 1895-1900]. We report here that ARD1, a 64-kDa protein with an 18-kDa carboxyl-terminal ADP-ribosylation factor (ARF) domain, exhibited significant GTPase activity, whereas the ARF domain, expressed as a recombinant protein in Escherichia coli, did not. Addition of the 46-kDa amino-terminal extension (similarly synthesized in E. coli) to the GTP-binding ARF-domain of ARD1 enhanced GTPase activity and inhibited GDP dissociation. The kinetic properties of mixtures of the ARF and non-ARF domains were similar to those of an intact recombinant ARD1. Physical association of the two proteins was demonstrated directly by gel filtration and by using the immobilized non-ARF domain. Thus, like the alpha subunits of heterotrimeric G proteins, ARD1 appears to consist of two domains that interact to regulate the biological activity of the protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A tetramer of the Mu transposase (MuA) pairs the recombination sites, cleaves the donor DNA, and joins these ends to a target DNA by strand transfer. Juxtaposition of the recombination sites is accomplished by the assembly of a stable synaptic complex of MuA protein and Mu DNA. This initial critical step is facilitated by the transient binding of the N-terminal domain of MuA to an enhancer DNA element within the Mu genome (called the internal activation sequence, IAS). Recently we solved the three-dimensional solution structure of the enhancer-binding domain of Mu phage transposase (residues 1-76, MuA76) and proposed a model for its interaction with the IAS element. Site-directed mutagenesis coupled with an in vitro transposition assay has been used to assess the validity of the model. We have identified five residues on the surface of MuA that are crucial for stable synaptic complex formation but dispensable for subsequent events in transposition. These mutations are located in the loop (wing) structure and recognition helix of the MuA76 domain of the transposase and do not seriously perturb the structure of the domain. Furthermore, in order to understand the dynamic behavior of the MuA76 domain prior to stable synaptic complex formation, we have measured heteronuclear 15N relaxation rates for the unbound MuA76 domain. In the DNA free state the backbone atoms of the helix-turn-helix motif are generally immobilized whereas the residues in the wing are highly flexible on the pico- to nanosecond time scale. Together these studies define the surface of MuA required for enhancement of transposition in vitro and suggest that a flexible loop in the MuA protein required for DNA recognition may become structurally ordered only upon DNA binding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rapid direct assay for polymerase-induced elongation along a given template is an obligate requirement for understanding the processivity of polymerization and the mode of action of drugs and inhibitors on this process. Surface plasmon resonance can be used to follow the association and the dissociation rates of a given reverse transcriptase on DNA.RNA and DNA.DNA hybrids immobilized on a biotin-streptavidin surface. The addition of nucleotides complementary to the template strand produces an increase in the local mass, as deduced from an increase in the measured signal, due to elongation of the primer strand that allows an estimation of both the extent and rate of the polymerization process. The terminator drug 3'-deoxy-3'-azidothymidine triphosphate completely abolishes the increase in signal as would be expected from an inhibition of elongation. This technique provides a sensitive assay for the affinities of different polymerases for specific templates and for the effects of terminators of the elongation process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neonatal Fc receptor (FcRn) transports maternal IgG from ingested milk in the gut to the bloodstream of newborn mammals. An FcRn dimer was observed in crystals of the receptor alone and of an FcRn-Fc complex, but its biological relevance was unknown. Here we use surface plasmon resonance-based biosensor assays to assess the role of FcRn dimerization in IgG binding. We find high-affinity IgG binding when FcRn is immobilized on a biosensor chip in an orientation facilitating dimerization but not when its orientation disrupts dimerization. This result supports a model in which IgG-induced dimerization of FcRn is relevant for signaling the cell to initiate endocytosis of the IgG-FcRn complex.