41 resultados para human osteoblast matrix
Resumo:
The extracellular matrix (ECM) is an intricate network composed of an array of macromolecules capable of regulating the functional responsiveness of cells. Its composition greatly varies among different types of tissue, and dysregulation of its metabolism may contribute to vascular remodeling during the pathogenesis of various diseases, including atherosclerosis. In view of their antiatherosclerotic effects, the role of Ca2+ channel blockers in the metabolism of ECM was examined. Nanomolar concentrations of the five Ca2+ channel blockers amlodipine, felodipine, manidipine, verapamil, or diltiazem significantly decreased both the constitutive and platelet-derived growth factor BB-dependent collagen deposition in the ECM formed by human vascular smooth muscle cells and fibroblasts. The drugs inhibited the expression of fibrillar collagens type I and III and of basement membrane type IV collagen. Furthermore, Ca2+ channel blockers specifically increased the proteolytic activity of the 72-kDa type IV collagenase as shown by gelatin zymography and inhibited the transcription of tissue inhibitor of metalloproteinases-2.
Resumo:
Tissue and cell-type specific expression of the rat osteocalcin (rOC) gene involves the interplay of multiple transcriptional regulatory factors. In this report we demonstrate that AML-1 (acute myeloid leukemia-1), a DNA-binding protein whose genes are disrupted by chromosomal translocations in several human leukemias, interacts with a sequence essential for enhancing tissue-restricted expression of the rOC gene. Deletion analysis of rOC promoter-chloramphenicol acetyltransferase constructs demonstrates that an AML-1-binding sequence within the proximal promoter (-138 to -130 nt) contributes to 75% of the level of osteocalcin gene expression. The activation potential of the AML-1-binding sequence has been established by overexpressing AML-1 in osteoblastic as well as in nonosseous cell lines. Overexpression not only enhances rOC promoter activity in osteoblasts but also mediates OC promoter activity in a nonosseous human fibroblastic cell line. A probe containing this site forms a sequence specific protein-DNA complex with nuclear extracts from osteoblastic cells but not from nonosseous cells. Antisera supershift experiments indicate the presence of AML-1 and its partner protein core-binding factor beta in this osteoblast-restricted complex. Mutations of the critical AML-1-binding nucleotides abrogate formation of the complex and strongly diminish promoter activity. These results indicate that an AML-1 related protein is functional in cells of the osteoblastic lineage and that the AML-1-binding site is a regulatory element important for osteoblast-specific transcriptional activation of the rOC gene.
Resumo:
We have synthesized a recombinant gene encoding a single-chain HLA-A2/beta 2-microglobulin (beta 2m) molecule by linking beta 2m through its carboxyl terminus via a short peptide spacer to HLA-A2 (A*0201). This gene has been expressed in the beta 2m-deficient colorectal tumor cell line DLD-1. Transfection of this cell with the single-chain construct was associated with conformationally correct cell surface expression of a class I molecule of appropriate molecular mass. The single-chain HLA class I molecule presented either exogenously added peptide or (after interferon-gamma treatment) endogenously processed antigen to an influenza A matrix-specific, HLA-A2-restricted cytotoxic T-lymphocyte line. The need for interferon gamma for the processing and presentation of endogenous antigen suggests that DLD-1 has an antigen-processing defect that can be up-regulated, a feature that may be found in other carcinomas. Our data indicate that single-chain HLA class I constructs can form functional class I molecules capable of presenting endogenously processed antigens. Such molecules should be of use for functional studies, as well as providing potential anticancer immunotherapeutic agents or vaccines.
Resumo:
In the replication of human immunodeficiency virus type 1 (HIV-1), gag MA (matrix), a major structural protein of the virus, carries out opposing targeting functions. During virus assembly, gag MA is cotranslationally myristoylated, a modification required for membrane targeting of gag polyproteins. During virus infection, however, gag MA, by virtue of a nuclear targeting signal at its N terminus, facilitates the nuclear localization of viral DNA and establishment of the provirus. We now show that phosphorylation of gag MA on tyrosine and serine prior to and during virus infection facilitates its dissociation from the membrane, thus allowing it to translocate to the nucleus. Inhibition of gag MA phosphorylation either on tyrosine or on serine prevents gag MA-mediated nuclear targeting of viral nucleic acids and impairs virus infectivity. The requirement for gag MA phosphorylation in virus infection is underscored by our finding that a serine/threonine kinase is associated with virions of HIV-1. These results reveal a novel level of regulation of primate lentivirus infectivity.
Resumo:
NMP-1 was initially identified as a nuclear matrix-associated DNA-binding factor that exhibits sequence-specific recognition for the site IV regulatory element of a histone H4 gene. This distal promoter domain is a nuclear matrix interaction site. In the present study, we show that NMP-1 is the multifunctional transcription factor YY1. Gel-shift and Western blot analyses demonstrate that NMP-1 is immunoreactive with YY1 antibody. Furthermore, purified YY1 protein specifically recognizes site IV and reconstitutes the NMP-1 complex. Western blot and gel-shift analyses indicate that YY1 is present within the nuclear matrix. In situ immunofluorescence studies show that a significant fraction of YY1 is localized in the nuclear matrix, principally but not exclusively associated with residual nucleoli. Our results confirm that NMP-1/YY1 is a ubiquitous protein that is present in both human cells and in rat osteosarcoma ROS 17/2.8 cells. The finding that NMP-1 is identical to YY1 suggests that this transcriptional regulator may mediate gene-matrix interactions. Our results are consistent with the concept that the nuclear matrix may functionally compartmentalize the eukaryotic nucleus to support regulation of gene expression.
Resumo:
Unlike most normal adult tissues, cyclic growth and tissue remodeling occur within the uterine endometrium throughout the reproductive years. The matrix metalloproteinases (MMPs), a family of structurally related enzymes that degrade specific components of the extracellular matrix are thought to be the physiologically relevant mediators of extracellular matrix composition and turnover. Our laboratory has identified MMPs of the stromelysin family in the cycling human endometrium, implicating these enzymes in mediating the extensive remodeling that occurs in this tissue. While the stromelysins are expressed in vivo during proliferation-associated remodeling and menstruation-associated endometrial breakdown, none of the stromelysins are expressed during the progesterone-dominated secretory phase of the cycle. Our in vitro studies of isolated cell types have confirmed progesterone suppression of stromal MMPs, but a stromal-derived paracrine factor was found necessary for suppression of the epithelial-specific MMP matrilysin. In this report, we demonstrate that transforming growth factor beta (TGF-beta) is produced by endometrial stroma in response to progesterone and can suppress expression of epithelial matrilysin independent of progesterone. Additionally, we find that an antibody directed against the mammalian isoforms of TGF-beta abolishes progesterone suppression of matrilysin in stromal-epithelial cocultures, implicating TGF-beta as the principal mediator of matrilysin suppression in the human endometrium.
Resumo:
The rapid progress in the cloning of proteoglycan genes has enabled investigators to examine in depth the functional roles these polyhedric molecules play in the control of cell proliferation. Decorin, a leucine-rich proteoglycan expressed by most connective tissues, is a prototype molecule that regulates cellular growth via two mechanisms: modulation of growth factor activity and matrix assembly. We now provide direct evidence that human colon cancer cells stably transfected with decorin cDNA exhibit a marked suppression of the transformed phenotype: the cells have a reduced growth rate in vitro, form small colonies in soft agar, and do not generate tumors in scid/scid mice. Several independent clones are arrested in the G1 phase of the cell cycle, and their growth suppression can be restored by treatment with decorin antisense oligodeoxynucleotides. These effects are independent of growth factors and are not due to either clonal selection or integration site of the decorin gene. These findings correlate well with the observation that decorin gene expression is markedly up-regulated during quiescence. Decorin thus appears to be one component of a negative loop that controls cell growth.
Resumo:
Compensatory ventilatory responses to increased inspiratory loading are essential for adequate breathing regulation in a number of pulmonary diseases; however, the human brain sites mediating such responses are unknown. Midsagittal and axial images were acquired in 11 healthy volunteers during unloaded and loaded (30 cmH2O; 1 cmH2O = 98 Pa) inspiratory breathing, by using functional magnetic resonance imaging (fMRI) strategies (1.5-tesla MR; repetition time, 72 msec; echo time, 45 msec; flip angle, 30 degrees; field of view, 26 cm; slice thickness, 5 mm; number of excitations, 1; matrix, 128 x 256). Digital image subtractions and region of interest analyses revealed significantly increased fMRI signal intensity in discrete areas of the ventral and dorsal pons, interpeduncular nucleus, basal forebrain, putamen, and cerebellar regions. Upon load withdrawal, certain regions displayed a rapid fMRI signal off-transient, while in others, a slower fMRI signal decay emerged. Sustained loading elicited slow decreases in fMRI signal across activated regions, while second application of an identical load resulted in smaller signal increases compared to initial signal responses (P < 0.001). A moderate inspiratory load is associated with consistent regional activation of discrete brain locations; certain of these regions have been implicated in mediation of loaded breathing in animal models. We speculate that temporal changes in fMRI signal may indicate respiratory after-discharge and/or habituation phenomena.
Resumo:
Extracellular human immunodeficiency virus type 1 (HIV-1) Tat protein promotes growth of spindle cells derived from AIDS-associated Kaposi sarcoma (AIDS-KS), an angioproliferative disease very frequent in HIV-1-infected individuals. Normal vascular cells, progenitors of AIDS-KS cells, proliferate in response to Tat after exposure to inflammatory cytokines, whose levels are augmented in HIV-1-infected individuals and in KS lesions. Here we show that Tat also promotes AIDS-KS and normal vascular cells to migrate and to degrade the basement membrane and stimulates endothelial cell morphogenesis on a matrix substrate. These effects are obtained at picomolar concentrations of exogenous Tat and are promoted by the treatment of the cells with the same inflammatory cytokines stimulating expression of the receptors for Tat, the integrins alpha 5 beta 1 and alpha v beta 3. Thus, under specific circumstances, Tat has angiogenic properties. As Tat and its receptors are present in AIDS-KS lesions, these data may explain some of the mechanisms by which Tat can induce angiogenesis and cooperate in the development of AIDS-KS.
Resumo:
We report a general mass spectrometric approach for the rapid identification and characterization of proteins isolated by preparative two-dimensional polyacrylamide gel electrophoresis. This method possesses the inherent power to detect and structurally characterize covalent modifications. Absolute sensitivities of matrix-assisted laser desorption ionization and high-energy collision-induced dissociation tandem mass spectrometry are exploited to determine the mass and sequence of subpicomole sample quantities of tryptic peptides. These data permit mass matching and sequence homology searching of computerized peptide mass and protein sequence data bases for known proteins and design of oligonucleotide probes for cloning unknown proteins. We have identified 11 proteins in lysates of human A375 melanoma cells, including: alpha-enolase, cytokeratin, stathmin, protein disulfide isomerase, tropomyosin, Cu/Zn superoxide dismutase, nucleoside diphosphate kinase A, galaptin, and triosephosphate isomerase. We have characterized several posttranslational modifications and chemical modifications that may result from electrophoresis or subsequent sample processing steps. Detection of comigrating and covalently modified proteins illustrates the necessity of peptide sequencing and the advantages of tandem mass spectrometry to reliably and unambiguously establish the identity of each protein. This technology paves the way for studies of cell-type dependent gene expression and studies of large suites of cellular proteins with unprecedented speed and rigor to provide information complementary to the ongoing Human Genome Project.
Resumo:
Human macrophages are believed to damage host tissues in chronic inflammatory disease states, but these cells have been reported to express only modest degradative activity in vitro. However, while examining the ability of human monocytes to degrade the extracellular matrix component elastin, we identified culture conditions under which the cells matured into a macrophage population that displayed a degradative phenotype hundreds of times more destructive than that previously ascribed to any other cell population. The monocyte-derived macrophages synthesized elastinolytic matrix metalloproteinases (i.e., gelatinase B and matrilysin) as well as cysteine proteinases (i.e., cathepsins B, L, and S), but only the cathepsins were detected in the extracellular milieu as fully processed, mature enzymes by either vital fluorescence or active-site labeling. Consistent with these observations, macrophage-mediated elastinolytic activity was not affected by matrix metalloproteinase inhibitors but could be almost completely abrogated by inhibiting cathepsins L and S. These data demonstrate that human macrophages mobilize cysteine proteinases to arm themselves with a powerful effector mechanism that can participate in the pathophysiologic remodeling of the extracellular matrix.