196 resultados para green fluorescent protein (GFP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a PCR approach we have isolated racF1, a novel member of the Rho family in Dictyostelium. The racF1 gene encodes a protein of 193 amino acids and is constitutively expressed throughout the Dictyostelium life cycle. Highest identity (94%) was found to a RacF2 isoform, to Dictyostelium Rac1A, Rac1B, and Rac1C (70%), and to Rac proteins of animal species (64–69%). To investigate the role of RacF1 in cytoskeleton-dependent processes, we have fused it at its amino-terminus with green fluorescent protein (GFP) and studied the dynamics of subcellular redistribution using a confocal laser scanning microscope and a double-view microscope system. GFP–RacF1 was homogeneously distributed in the cytosol and accumulated at the plasma membrane, especially at regions of transient intercellular contacts. GFP–RacF1 also localized transiently to macropinosomes and phagocytic cups and was gradually released within <1 min after formation of the endocytic vesicle or the phagosome, respectively. On stimulation with cAMP, no enrichment of GFP–RacF1 was observed in leading fronts, from which it was found to be initially excluded. Cell lines were obtained using homologous recombination that expressed a truncated racF1 gene lacking sequences encoding the carboxyl-terminal region responsible for membrane targeting. These cells displayed normal phagocytosis, endocytosis, and exocytosis rates. Our results suggest that RacF1 associates with dynamic structures that are formed during pinocytosis and phagocytosis. Although RacF1 appears not to be essential, it might act in concert and/or share functions with other members of the Rho family in the regulation of a subset of cytoskeletal rearrangements that are required for these processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MPS2 (monopolar spindle two) gene is one of several genes required for the proper execution of spindle pole body (SPB) duplication in the budding yeast Saccharomyces cerevisiae (Winey et al., 1991). We report here that the MPS2 gene encodes an essential 44-kDa protein with two putative coiled-coil regions and a hydrophobic sequence. Although MPS2 is required for normal mitotic growth, some null strains can survive; these survivors exhibit slow growth and abnormal ploidy. The MPS2 protein was tagged with nine copies of the myc epitope, and biochemical fractionation experiments show that it is an integral membrane protein. Visualization of a green fluorescent protein (GFP) Mps2p fusion protein in living cells and indirect immunofluorescence microscopy of 9xmyc-Mps2p revealed a perinuclear localization with one or two brighter foci of staining corresponding to the SPB. Additionally, immunoelectron microscopy shows that GFP-Mps2p localizes to the SPB. Our analysis suggests that Mps2p is required as a component of the SPB for insertion of the nascent SPB into the nuclear envelope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The clathrin assembly lymphoid myeloid leukemia (CALM) gene encodes a putative homologue of the clathrin assembly synaptic protein AP180. Hence the biochemical properties, the subcellular localization, and the role in endocytosis of a CALM protein were studied. In vitro binding and coimmunoprecipitation demonstrated that the clathrin heavy chain is the major binding partner of CALM. The bulk of cellular CALM was associated with the membrane fractions of the cell and localized to clathrin-coated areas of the plasma membrane. In the membrane fraction, CALM was present at near stoichiometric amounts relative to clathrin. To perform structure–function analysis of CALM, we engineered chimeric fusion proteins of CALM and its fragments with the green fluorescent protein (GFP). GFP–CALM was targeted to the plasma membrane–coated pits and also found colocalized with clathrin in the Golgi area. High levels of expression of GFP–CALM or its fragments with clathrin-binding activity inhibited the endocytosis of transferrin and epidermal growth factor receptors and altered the steady-state distribution of the mannose-6-phosphate receptor in the cell. In addition, GFP–CALM overexpression caused the loss of clathrin accumulation in the trans-Golgi network area, whereas the localization of the clathrin adaptor protein complex 1 in the trans-Golgi network remained unaffected. The ability of the GFP-tagged fragments of CALM to affect clathrin-mediated processes correlated with the targeting of the fragments to clathrin-coated areas and their clathrin-binding capacities. Clathrin–CALM interaction seems to be regulated by multiple contact interfaces. The C-terminal part of CALM binds clathrin heavy chain, although the full-length protein exhibited maximal ability for interaction. Altogether, the data suggest that CALM is an important component of coated pit internalization machinery, possibly involved in the regulation of clathrin recruitment to the membrane and/or the formation of the coated pit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe for the first time the visualization of Golgi membranes in living yeast cells, using green fluorescent protein (GFP) chimeras. Late and early Golgi markers are present in distinct sets of scattered, moving cisternae. The immediate effects of temperature-sensitive mutations on the distribution of these markers give clues to the transport processes occurring. We show that the late Golgi marker GFP-Sft2p and the glycosyltransferases, Anp1p and Mnn1p, disperse into vesicle-like structures within minutes of a temperature shift in sec18, sft1, and sed5 cells, but not in sec14 cells. This is consistent with retrograde vesicular traffic, mediated by the vesicle SNARE Sft1p, to early cisternae containing the target SNARE Sed5p. Strikingly, Sed5p itself moves rapidly to the endoplasmic reticulum (ER) in sec12 cells, implying that it cycles through the ER. Electron microscopy shows that Golgi membranes vesiculate in sec18 cells within 10 min of a temperature shift. These results emphasize the dynamic nature of Golgi cisternae and satisfy the kinetic requirements of a cisternal maturation model in which all resident proteins must undergo retrograde vesicular transport, either within the Golgi complex or from there to the ER, as anterograde cargo advances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleocapsid of hepatitis B virus (HBV), or HBcAg, is a highly symmetric structure formed by multiple dimers of a single core protein that contains potent T helper epitopes in its 183-aa sequence. Both factors make HBcAg an unusually strong immunogen and an attractive candidate as a carrier for foreign epitopes. The immunodominant c/e1 epitope on the capsid has been suggested as a superior location to convey high immunogenicity to a heterologous sequence. Because of its central position, however, any c/e1 insert disrupts the core protein’s primary sequence; hence, only peptides, or rather small protein fragments seemed to be compatible with particle formation. According to recent structural data, the epitope is located at the tips of prominent surface spikes formed by the very stable dimer interfaces. We therefore reasoned that much larger inserts might be tolerated, provided the individual parts of a corresponding fusion protein could fold independently. Using the green fluorescent protein (GFP) as a model insert, we show that the chimeric protein efficiently forms fluorescent particles; hence, all of its structurally important parts must be properly folded. We also demonstrate that the GFP domains are surface-exposed and that the chimeric particles elicit a potent humoral response against native GFP. Hence, proteins of at least up to 238 aa can be natively displayed on the surface of HBV core particles. Such chimeras may not only be useful as vaccines but may also open the way for high resolution structural analyses of nonassembling proteins by electron microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibronectin (FN) forms the primitive fibrillar matrix in both embryos and healing wounds. To study the matrix in living cell cultures, we have constructed a cell line that secretes FN molecules chimeric with green fluorescent protein. These FN–green fluorescent protein molecules were assembled into a typical matrix that was easily visualized by fluorescence over periods of several hours. FN fibrils remained mostly straight, and they were seen to extend and contract to accommodate movements of the cells, indicating that they are elastic. When fibrils were broken or detached from cells, they contracted to less than one-fourth of their extended length, demonstrating that they are highly stretched in the living culture. Previous work from other laboratories has suggested that cryptic sites for FN assembly may be exposed by tension on FN. Our results show directly that FN matrix fibrils are not only under tension but are also highly stretched. This stretched state of FN is an obvious candidate for exposing the cryptic assembly sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doxycycline (Dox)-sensitive co-regulation of two transcriptionally coupled transgenes was investigated in the mouse. For this, we generated four independent mouse lines carrying coding regions for green fluorescent protein (GFP) and β-galactosidase in a bicistronic, bidirectional module. In all four lines the expression module was silent but was activated when transcription factor tTA was provided by the α-CaMKII-tTA transgene. In vivo analysis of GFP fluorescence, β-galactosidase and immunochemical stainings revealed differences in GFP and β-galactosidase levels between the lines, but comparable patterns of expression. Strong signals were found in neurons of the olfactory system, neocortical, limbic lobe and basal ganglia structures. Weaker expression was limited to thalamic, pontine and medullary structures, the spinal cord, the eye and to some Purkinje cells in the cerebellum. Strong GFP signals were always accompanied by intense β-galactosidase activity, both of which could be co-regulated by Dox. We conclude that the tTA-sensitive bidirectional expression module is well suited to express genes of interest in a regulated manner and that GFP can be used to track transcriptional activity of the module in the living mouse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmodesmata mediate direct cell-to-cell communication in plants. One of their significant features is that primary plasmodesmata formed at the time of cytokinesis often undergo structural modifications, by the de novo addition of cytoplasmic strands across cell walls, to become complex secondary plasmodesmata during plant development. Whether such modifications allow plasmodesmata to gain special transport functions has been an outstanding issue in plant biology. Here we present data showing that the cucumber mosaic virus 3a movement protein (MP):green fluorescent protein (GFP) fusion was not targeted to primary plasmodesmata in the epidermis of young or mature leaves in transgenic tobacco (Nicotiana tabacum) plants constitutively expressing the 3a:GFP fusion gene. Furthermore, the cucumber mosaic virus 3a MP:GFP fusion protein produced in planta by biolistic bombardment of the 3a:GFP fusion gene did not traffic between cells interconnected by primary plasmodesmata in the epidermis of a young leaf. In contrast, the 3a MP:GFP was targeted to complex secondary plasmodesmata and trafficked from cell to cell when a leaf reached a certain developmental stage. These data provide the first experimental evidence, to our knowledge, that primary and complex secondary plasmodesmata have different protein-trafficking functions and suggest that complex secondary plasmodesmata may be formed to traffic specific macromolecules that are important for certain stages of leaf development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxysterol binding protein (OSBP) is the only protein known to bind specifically to the group of oxysterols with potent effects on cholesterol homeostasis. Although the function of OSBP is currently unknown, an important role is implicated by the existence of multiple homologues in all eukaryotes so far examined. OSBP and a subset of homologues contain pleckstrin homology (PH) domains. Such domains are responsible for the targeting of a wide range of proteins to the plasma membrane. In contrast, OSBP is a peripheral protein of Golgi membranes, and its PH domain targets to the trans-Golgi network of mammalian cells. In this article, we have characterized Osh1p, Osh2p, and Osh3p, the three homologues of OSBP in Saccharomyces cerevisiae that contain PH domains. Examination of a green fluorescent protein (GFP) fusion to Osh1p revealed a striking dual localization with the protein present on both the late Golgi, and in the recently described nucleus-vacuole (NV) junction. Deletion mapping revealed that the PH domain of Osh1p specified targeting to the late Golgi, and an ankyrin repeat domain targeting to the NV junction, the first such targeting domain identified for this structure. GFP fusions to Osh2p and Osh3p showed intracellular distributions distinct from that of Osh1p, and their PH domains appear to contribute to their differing localizations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Caenorhabditis elegans, pre-mRNA for the essential splicing factor U2AF65 sometimes is spliced to produce an RNA that includes an extra 216-bp internal exon, exon 3. Inclusion of exon 3 inserts an in-frame stop codon, yet this RNA is not subject to SMG-mediated RNA surveillance. To test whether exon 3 causes RNA to remain nuclear and thereby escape decay, we inserted it into the 3′ untranslated region of a gfp reporter gene. Although exon 3 did not affect accumulation or processing of the mRNA, it dramatically suppressed expression of green fluorescent protein (GFP). We showed by in situ hybridization that exon 3-containing gfp RNA is retained in the nucleus. Intriguingly, exon 3 contains 10 matches to the 8-bp 3′ splice-site consensus. We hypothesized that U2AF might recognize this octamer and thereby prevent export. This idea is supported by RNA interference experiments in which reduced levels of U2AF resulted in a small burst of gfp expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myofibril formation was visualized in cultured live cardiomyocytes that were transfected with plasmids expressing green fluorescent protein (GFP) linked to the Z-band protein, α-actinin. The expression of this fluorescent protein provided an in vivo label for structures containing α-actinin. The GFP–α-actinin fusion protein was incorporated into Z-bands, intercalated discs, and attachment plaques, as well as into the punctate aggregates, or Z-bodies, that are thought to be the precursors of Z-bands. Observations of live cells over several days in culture permitted us to test aspects of several theories of myofibril assembly that had been proposed previously based on the study of fixed cells. Fine fibrils, called premyofibrils, that formed de novo at the spreading edges of cardiomyocytes, contained punctate concentrations of α-actinin, termed Z-bodies. The punctate Z-bodies grew and aligned with Z-bodies in adjacent fibrils. With increasing time, adjacent fibrils and Z-bodies appeared to fuse and form mature myofibrils and Z-bands in cytoplasmic regions where the linear arrays of Z-bodies had been. These new myofibrils became aligned with existing myofibrils at their Z-bands to form myofibrils that spanned the length of the spread cell. These results are consistent with a model that postulates that the fibrils that form de novo near the cell membrane are premyofibrils—i.e., the precursors of mature myofibrils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In several cell types, an intriguing correlation exists between the position of the centrosome and the direction of cell movement: the centrosome is located behind the leading edge, suggesting that it serves as a steering device for directional movement. A logical extension of this suggestion is that a change in the direction of cell movement is preceded by a reorientation, or shift, of the centrosome in the intended direction of movement. We have used a fusion protein of green fluorescent protein (GFP) and γ-tubulin to label the centrosome in migrating amoebae of Dictyostelium discoideum, allowing us to determine the relationship of centrosome positioning and the direction of cell movement with high spatial and temporal resolution in living cells. We find that the extension of a new pseudopod in a migrating cell precedes centrosome repositioning. An average of 12 sec elapses between the initiation of pseudopod extension and reorientation of the centrosome. If no reorientation occurs within approximately 30 sec, the pseudopod is retracted. Thus the centrosome does not direct a cell’s migration. However, its repositioning stabilizes a chosen direction of movement, most probably by means of the microtubule system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of methods for efficient gene transfer to terminally differentiated retinal cells is important to study the function of the retina as well as for gene therapy of retinal diseases. We have developed a lentiviral vector system based on the HIV that can transduce terminally differentiated neurons of the brain in vivo. In this study, we have evaluated the ability of HIV vectors to transfer genes into retinal cells. An HIV vector containing a gene encoding the green fluorescent protein (GFP) was injected into the subretinal space of rat eyes. The GFP gene under the control of the cytomegalovirus promoter was efficiently expressed in both photoreceptor cells and retinal pigment epithelium. However, the use of the rhodopsin promoter resulted in expression predominantly in photoreceptor cells. Most successfully transduced eyes showed that photoreceptor cells in >80% of the area of whole retina expressed the GFP. The GFP expression persisted for at least 12 weeks with no apparent decrease. The efficient gene transfer into photoreceptor cells by HIV vectors will be useful for gene therapy of retinal diseases such as retinitis pigmentosa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metastasis is the ultimate life-threatening stage of cancer. The lack of accurate model systems thwarted studies of the metastatic cell’s basic biology. To follow continuously the succeeding stages of metastatic colony growth, we heritably labeled cells from the human lung adenocarcinoma cell line ANIP 973 with green fluorescent protein (GFP) by transfection with GFP cDNA. Labeled cells were then injected intravenously into nude mice, where, by 7 days, they formed brilliantly fluorescing metastatic colonies on mouse lung [Chishima, T., Miyagi, Y., Wang, X., Yang, M., Tan, Y., Shimada, H., Moossa, A. R. & Hoffman, R. M. (1997) Clin. Exp. Metastasis 15, 547–552]. The seeded lung tissue was then excised and incubated in the three-dimensional sponge-gel-matrix-supported histoculture that maintained the critical features of progressive in vivo tumor colonization while allowing continuous access for measurement and manipulation. Tumor progression was continuously visualized by GFP fluorescence in the same individual cultures over a 52-day period, during which the tumors spread throughout the lung. Histoculture tumor colonization was selective for lung cancer cells to grow on lung tissue, because no growth occurred on histocultured mouse liver tissue, which was also observed in vivo. The ability to support selective organ colonization in histoculture and visualize tumor progression by GFP fluorescence allows the in vitro study of the governing processes of metastasis [Kuo, T.-H., Kubota, T., Watanbe, M., Furukawa, T., Teramoto, T., Ishibiki, K., Kitajima, M., Moossa, A. R., Penman, S. & Hoffman, R. M. (1995) Proc. Natl. Acad. Sci. USA 92, 12085–12089]. The results presented here provide significant, new opportunities to understand and to develop treatments that prevent and possibly reverse metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BRCA2 mutations predispose carriers mainly to breast cancer. The vast majority of BRCA2 mutations are predicted to result in a truncated protein product. The smallest known cancer-associated deletion removes from the C terminus only 224 of the 3,418 residues constituting BRCA2, suggesting that these terminal amino acids are crucial for BRCA2 function. A series of green fluorescent protein (GFP)-tagged BRCA2 deletion mutants revealed that nuclear localization depends on two nuclear localization signals that reside within the final 156 residues of BRCA2. Consistent with this observation, an endogenous truncated BRCA2 mutant (6174delT) was found to be cytoplasmic. Together, these studies provide a simple explanation for why the vast majority of BRCA2 mutants are nonfunctional: they do not translocate into the nucleus.