64 resultados para genomic walking


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene expression profiling provides powerful analyses of transcriptional responses to cellular perturbation. In contrast to DNA array-based methods, reporter gene technology has been underused for this application. Here we describe a genomewide, genome-registered collection of Escherichia coli bioluminescent reporter gene fusions. DNA sequences from plasmid-borne, random fusions of E. coli chromosomal DNA to a Photorhabdus luminescens luxCDABE reporter allowed precise mapping of each fusion. The utility of this collection covering about 30% of the transcriptional units was tested by analyzing individual fusions representative of heat shock, SOS, OxyR, SoxRS, and cya/crp stress-responsive regulons. Each fusion strain responded as anticipated to environmental conditions known to activate the corresponding regulatory circuit. Thus, the collection mirrors E. coli's transcriptional wiring diagram. This genomewide collection of gene fusions provides an independent test of results from other gene expression analyses. Accordingly, a DNA microarray-based analysis of mitomycin C-treated E. coli indicated elevated expression of expected and unanticipated genes. Selected luxCDABE fusions corresponding to these up-regulated genes were used to confirm or contradict the DNA microarray results. The power of partnering gene fusion and DNA microarray technology to discover promoters and define operons was demonstrated when data from both suggested that a cluster of 20 genes encoding production of type I extracellular polysaccharide in E. coli form a single operon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA ligase IV (Lig4) and the DNA-dependent protein kinase (DNA-PK) function in nonhomologous end joining (NHEJ). However, although Lig4 deficiency causes late embryonic lethality, deficiency in DNA-PK subunits (Ku70, Ku80, and DNA-PKcs) does not. Here we demonstrate that, similar to p53 deficiency, ataxia-telangiectasia-mutated (ATM) gene deficiency rescues the embryonic lethality and neuronal apoptosis, but not impaired lymphocyte development, associated with Lig4 deficiency. However, in contrast to p53 deficiency, ATM deficiency enhances deleterious effects of Lig4 deficiency on growth potential of embryonic fibroblasts (MEFs) and genomic instability in both MEFs and cultured progenitor lymphocytes, demonstrating significant differences in the interplay of p53 vs. ATM with respect to NHEJ. Finally, in dramatic contrast to effects on Lig4 deficiency, ATM deficiency causes early embryonic lethality in Ku- or DNA-PKcs-deficient mice, providing evidence for an NHEJ-independent role for the DNA-PK holoenzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Candida albicans is a diploid fungus that has become a medically important opportunistic pathogen in immunocompromised individuals. We have sequenced the C. albicans genome to 10.4-fold coverage and performed a comparative genomic analysis between C. albicans and Saccharomyces cerevisiae with the objective of assessing whether Candida possesses a genetic repertoire that could support a complete sexual cycle. Analyzing over 500 genes important for sexual differentiation in S. cerevisiae, we find many homologues of genes that are implicated in the initiation of meiosis, chromosome recombination, and the formation of synaptonemal complexes. However, others are striking in their absence. C. albicans seems to have homologues of all of the elements of a functional pheromone response pathway involved in mating in S. cerevisiae but lacks many homologues of S. cerevisiae genes for meiosis. Other meiotic gene homologues in organisms ranging from filamentous fungi to Drosophila melanogaster and Caenorhabditis elegans were also found in the C. albicans genome, suggesting potential alternative mechanisms of genetic exchange.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present here the complete genome sequence of a common avian clone of Pasteurella multocida, Pm70. The genome of Pm70 is a single circular chromosome 2,257,487 base pairs in length and contains 2,014 predicted coding regions, 6 ribosomal RNA operons, and 57 tRNAs. Genome-scale evolutionary analyses based on pairwise comparisons of 1,197 orthologous sequences between P. multocida, Haemophilus influenzae, and Escherichia coli suggest that P. multocida and H. influenzae diverged ≈270 million years ago and the γ subdivision of the proteobacteria radiated about 680 million years ago. Two previously undescribed open reading frames, accounting for ≈1% of the genome, encode large proteins with homology to the virulence-associated filamentous hemagglutinin of Bordetella pertussis. Consistent with the critical role of iron in the survival of many microbial pathogens, in silico and whole-genome microarray analyses identified more than 50 Pm70 genes with a potential role in iron acquisition and metabolism. Overall, the complete genomic sequence and preliminary functional analyses provide a foundation for future research into the mechanisms of pathogenesis and host specificity of this important multispecies pathogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We developed a method for the reconstruction of a 100 kb DNA fragment into a bacterial artificial chromosome (BAC). The procedure makes use of iterative rounds of homologous recombination in Escherichia coli. Smaller, overlapping fragments of cloned DNA, such as cosmid clones, are required. They are transferred first into a temperature-sensitive replicon and then into the BAC of choice. We demonstrated the usefulness of this procedure by assembling a 90 kb genomic segment into an E.coli–Streptomyces artificial chromosome (ESAC). Using this procedure, ESACs are easy to handle and remarkably more stable than the starting cosmids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The placenta contains several types of feto-maternal interfaces where zygote-derived cells interact with maternal cells or maternal blood for the promotion of fetal growth and viability. The genetic factors regulating the interactions between different cell types within feto-maternal interfaces and the relative contributions of the maternal and zygotic genomes are poorly understood. Genomic imprinting, the epigenetic process responsible for parental origin-dependent functional differences between homologous chromosomes, has been proposed to contribute to these events. Previous studies showed that mouse conceptuses with an absence of imprinted differences between the two copies of chromosome 12 (upon paternal inheritance of both copies) die late in gestation and have a variety of defects, including placentomegaly. Here we examined the role of chromosome 12 imprinting in these placentae in more detail. We show that the spatial interactions between different cell types within feto-maternal interfaces are defective and identify abnormal behaviors in both zygote-derived and maternal cells that are attributed to the genome of the zygote but not the mother. These include compromised invasion of the maternal decidualized endometrium and the central maternal artery situated within it by zygote-derived trophoblast, abnormalities in the wall of the central maternal artery, and defects within the zygote-derived cellular layer of the labyrinth, which is in direct contact with maternal blood. These findings demonstrate multiple roles for chromosome 12 imprinting in the placenta that have not previously been associated with imprinting effects. They provide insights into the function of imprinting in placental development and have evolutionary and clinical implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1950, G. Ledyard Stebbins devoted two chapters of his book Variation and Evolution in Plants (Columbia Univ. Press, New York) to polyploidy, one on occurrence and nature and one on distribution and significance. Fifty years later, many of the questions Stebbins posed have not been answered, and many new questions have arisen. In this paper, we review some of the genetic attributes of polyploids that have been suggested to account for the tremendous success of polyploid plants. Based on a limited number of studies, we conclude: (i) Polyploids, both individuals and populations, generally maintain higher levels of heterozygosity than do their diploid progenitors. (ii) Polyploids exhibit less inbreeding depression than do their diploid parents and can therefore tolerate higher levels of selfing; polyploid ferns indeed have higher levels of selfing than do their diploid parents, but polyploid angiosperms do not differ in outcrossing rates from their diploid parents. (iii) Most polyploid species are polyphyletic, having formed recurrently from genetically different diploid parents. This mode of formation incorporates genetic diversity from multiple progenitor populations into the polyploid “species”; thus, genetic diversity in polyploid species is much higher than expected by models of polyploid formation involving a single origin. (iv) Genome rearrangement may be a common attribute of polyploids, based on evidence from genome in situ hybridization (GISH), restriction fragment length polymorphism (RFLP) analysis, and chromosome mapping. (v) Several groups of plants may be ancient polyploids, with large regions of homologous DNA. These duplicated genes and genomes can undergo divergent evolution and evolve new functions. These genetic and genomic attributes of polyploids may have both biochemical and ecological benefits that contribute to the success of polyploids in nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Olfactory receptor (OR) genes represent ≈1% of genomic coding sequence in mammals, and these genes are clustered on multiple chromosomes in both the mouse and human genomes. We have taken a comparative genomics approach to identify features that may be involved in the dynamic evolution of this gene family and in the transcriptional control that results in a single OR gene expressed per olfactory neuron. We sequenced ≈350 kb of the murine P2 OR cluster and used synteny, gene linkage, and phylogenetic analysis to identify and sequence ≈111 kb of an orthologous cluster in the human genome. In total, 18 mouse and 8 human OR genes were identified, including 7 orthologs that appear to be functional in both species. Noncoding homology is evident between orthologs and generally is confined within the transcriptional unit. We find no evidence for common regulatory features shared among paralogs, and promoter regions generally do not contain strong promoter motifs. We discuss these observations, as well as OR clustering, in the context of evolutionary expansion and transcriptional regulation of OR repertoires.