48 resultados para gene amplification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological significance of DNA amplification in cancer is thought to be due to the selection of increased expression of a single or few important genes. However, systematic surveys of the copy number and expression of all genes within an amplified region of the genome have not been performed. Here we have used a combination of molecular, genomic, and microarray technologies to identify target genes for 17q23, a common region of amplification in breast cancers with poor prognosis. Construction of a 4-Mb genomic contig made it possible to define two common regions of amplification in breast cancer cell lines. Analysis of 184 primary breast tumors by fluorescence in situ hybridization on tissue microarrays validated these results with the highest amplification frequency (12.5%) observed for the distal region. Based on GeneMap'99 information, 17 known genes and 26 expressed sequence tags were localized to the contig. Analysis of genomic sequence identified 77 additional transcripts. A comprehensive analysis of expression levels of these transcripts in six breast cancer cell lines was carried out by using complementary DNA microarrays. The expression patterns varied from one cell line to another, and several overexpressed genes were identified. Of these, RPS6KB1, MUL, APPBP2, and TRAP240 as well as one uncharacterized expressed sequence tag were located in the two common amplified regions. In summary, comprehensive analysis of the 17q23 amplicon revealed a limited number of highly expressed genes that may contribute to the more aggressive clinical course observed in breast cancer patients with 17q23-amplified tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Messenger RNA transcripts of the highly pigmented murine melanoma B16-F1 cells were compared with those from their weakly pigmented derivative B16-F10 cells by differential display. A novel gene called msg1 (melanocyte-specific gene) was found to be expressed at high levels in B16-F1 cells but at low levels in B16-F10 cells. Expression of msg1 was undetectable in the amelanotic K1735 murine melanoma cells. The pigmented murine melanocyte cell line melan-a expressed msg1, as did pigmented primary cultures of murine and human melanocytes; however, seven amelanotic or very weakly pigmented human melanoma cell lines were negative. Transformation of murine melanocytes by transfection with v-Ha-ras or Ela was accompanied by depigmentation and led to complete loss of msg1 expression. The normal tissue distribution of msg1 mRNA transcripts in adult mice was confined to melanocytes and testis. Murine msg1 and human MSG1 genes encode a predicted protein of 27 kDa with 75% overall amino acid identity and 96% identity within the C-terminal acidic domain of 54 amino acids. This C-terminal domain was conserved with 76% amino acid identity in another protein product of a novel human gene, MRG1 (msg1-related gene), isolated from normal human melanocyte cDNA by 5'-rapid amplification of cDNA ends based on the homology to msg1. The msg1 protein was localized to the melanocyte nucleus by immunofluorescence cytochemistry. We conclude that msg1 encodes a nuclear protein, is melanocyte-specific, and appears to be lost in depigmented melanoma cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sequences of cloned resistance genes from a wide range of plant taxa reveal significant similarities in sequence homology and structural motifs. This is observed among genes conferring resistance to viral, bacterial, and fungal pathogens. In this study, oligonucleotide primers designed for conserved sequences from coding regions of disease resistance genes N (tobacco), RPS2 (Arabidopsis) and L6 (flax) were used to amplify related sequences from soybean [Glycine max (L.) Merr.]. Sequencing of amplification products indicated that at least nine classes of resistance gene analogs (RGAs) were detected. Genetic mapping of members of these classes located them to eight different linkage groups. Several RGA loci mapped near known resistance genes. A bacterial artificial chromosome library of soybean DNA was screened using primers and probes specific for eight RGA classes and clones were identified containing sequences unique to seven classes. Individual bacterial artificial chromosomes contained 2-10 members of single RGA classes. Clustering and sequence similarity of members of RGA classes suggests a common process in their evolution. Our data indicate that it may be possible to use sequence homologies from conserved motifs of cloned resistance genes to identify candidate resistance loci from widely diverse plant taxa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a specific and sensitive nucleic acid amplification assay that is suitable for routine gene detection. The assay is based on a novel molecular genetic strategy in which two different RNA probes are hybridized to adjacent positions on a target nucleic acid and then ligated to form an amplifiable reporter RNA. The reporter RNA is then replicated up to a hundred billion-fold in a 30-min isothermal reaction that signals the presence of the target. The assay can detect fewer than 100 nucleic acid molecules; it provides quantitative results over a wide range of target concentrations and it employs a universal format that can detect any infectious agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primer extension and RACE (rapid amplification of cDNA ends) assays were used to identify and sequence the 5' terminus of mouse ob mRNA. This sequence was used to obtain a recombinant bacteriophage containing the first exon of the encoding gene. DNA sequence analysis of the region immediately upstream of the first exon of the mouse ob gene revealed DNA sequences corresponding to presumptive cis-regulatory elements. A canonical TATA box was observed 30-34 base pairs upstream from the start site of transcription and a putative binding site for members of the C/EBP family of transcription factors was identified immediately upstream from the TATA box. Nuclear extracts prepared from primary adipocytes contained a DNA binding activity capable of avid and specific interaction with the putative C/EBP response element; antibodies to C/EBP alpha neutralized the DNA binding activity present in adipocyte nuclear extracts. When linked to a firefly luciferase reporter and transfected into primary adipocytes, the presumptive promoter of the mouse ob gene facilitated luciferase expression. When transfected into HepG2 cells, which lack C/EBP alpha, the mouse ob promoter was only weakly active. Supplementation of C/EBP alpha by cotransfection with a C/EBP alpha expression vector markedly stimulated luciferase expression. Finally, an ob promoter variant mutated at the C/EBP response element was inactive in both primary adipocytes and HepG2 cells. These observations provide evidence for identification of a functional promoter capable of directing expression of the mouse ob gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression of at least 24 distinct genes of Pseudomonas aeruginosa PAO1 is under direct control of the "ferric uptake regulator" (Fur). Novel targets of the Fur protein were isolated in a powerful SELEX (systematic evolution of ligands by exponential enrichment)-like cycle selection consisting of in vitro DNA-Fur interaction, binding to anti-Fur antibody, purification on protein G, and PCR amplification. DNA fragments obtained after at least three exponential enrichment cycles were cloned and subjected to DNA mobility-shift assays and DNase I footprint analyses to verify the specific interaction with the Fur protein in vitro. Iron-dependent expression of the corresponding genes in vivo was monitored by RNase protection analysis. In total, 20 different DNA fragments were identified which represent actual Pseudomonas iron-regulated genes (PIGs). While four PIGs are identical to already known genes (pfeR, pvdS, tonB, and fumC, respectively), 16 PIGs represent previously unknown genes. Homology studies of the putative proteins encoded by the PIGs allowed us to speculate about their possible function. Two PIG products were highly similar to siderophore receptors from various species, and three PIG products were significantly homologous to alternative sigma factors. Furthermore, homologs of the Escherichia coli ORF1-tolQ, nuoA, stringent starvation protein Ssp, and of a two-component regulatory system similar to the Pseudomonas syringae LemA sensor kinase were identified. The putative gene products of seven additional PIGs did not show significant homologies to any known proteins. The PIGs were mapped on the P.aeruginosa chromosome. Their possible role in iron metabolism and virulence of P. aeruginosa is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PCR amplification of template DNAs extracted from mixed, naturally occurring microbial populations, using oligonucleotide primers complementary to highly conserved sequences, was used to obtain a large collection of diverse RNase P RNA-encoding genes. An alignment of these sequences was used in a comparative analysis of RNase P RNA secondary and tertiary structure. The new sequences confirm the secondary structure model based on sequences from cultivated organisms (with minor alterations in helices P12 and P18), providing additional support for nearly every base pair. Analysis of sequence covariation using the entire RNase P RNA data set reveals elements of tertiary structure in the RNA; the third nucleotides (underlined) of the GNRA tetraloops L14 and L18 are seen to interact with adjacent Watson-Crick base pairs in helix P8, forming A:G/C or G:A/U base triples. These experiments demonstrate one way in which the enormous diversity of natural microbial populations can be used to elucidate molecular structure through comparative analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To facilitate large-scale genotype analysis, an efficient PCR-based multiplex approach has been developed. For simultaneously amplifying the target sequences at a large number of genetic loci, locus-specific primers containing 5' universal tails are used. Attaching the universal tails to the target sequences in the initial PCR steps allows replacement of all specific primers with a pair of primers identical to the universal tails and converts the multiplex amplification into "uniplex." Simultaneous amplification of 26 genetic loci with this approach is described. The multiplex amplification can be coupled with genotype determination. By incorporating a single-base mismatch between a primer and the template into the target sequences, a polymorphic site can be converted into a desirable restriction fragment length polymorphism when it is necessary. In this way, the allelic PCR products for the polymorphic loci can be discriminated by gel electrophoresis after restriction enzyme digestion. In this study, 32 loci were typed in such a multiplex way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An entire gene encoding wheat (var. Hard Red Winter Tam 107) acetyl-CoA carboxylase [ACCase; acetyl-CoA:carbon-dioxide ligase (ADP-forming), EC 6.4.1.2] has been cloned and sequenced. Comparison of the 12-kb genomic sequence with the 7.4-kb cDNA sequence reported previously revealed 29 introns. Within the coding region, the exon sequence is 98% identical to the known wheat cDNA sequence. A second ACCase gene was identified by sequencing fragments of genomic clones that include the first two exons and the first intron. Additional transcripts were detected by 5' and 3' RACE analysis (rapid amplification of cDNA ends). One set of transcripts had a 5' end sequence identical to the cDNA found previously and another set was identical to the gene reported here. The 3' RACE clones fall into four distinguishable sequence sets, bringing the number of ACCase sequences to six. None of these cDNA or genomic clones encodes a chloroplast targeting signal. Identification of six different sequences suggests that either the cytosolic ACCase genes are duplicated in the three chromosome sets in hexaploid wheat or that each of the six alleles of the cytosolic ACCase gene has a readily distinguishable DNA sequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed an approach to study changes in gene expression by selective PCR amplification and display of 3' end restriction fragments of double-stranded cDNAs. This method produces highly consistent and reproducible patterns, can detect almost all mRNAs in a sample, and can resolve hidden differences such as bands that differ in their sequence but comigrate on a gel. Bands corresponding to known cDNAs move to predictable positions on the gel, making this a powerful approach to correlate gel patterns with cDNA data bases. Applying this method, we have examined differences in gene expression patterns during T-cell activation. Of a total of 700 bands that were evaluated in this study, as many as 3-4% represented mRNAs that are upregulated, while approximately 2% were down-regulated within 4 hr of activation of Jurkat T cells. These and other results suggest that this approach is suitable for the systematic, expeditious, and nearly exhaustive elucidation of subtle changes in the patterns of gene expression in cells with altered physiologic states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agarose-encapsulated, metabolically active, permeabilized nuclei from human hematopoietic cell lines were tested for Z-DNA formation in the beta-globin gene cluster. Biotinylated monoclonal antibodies against Z-DNA were diffused into the nuclei and cross-linked to DNA with a 10-ns laser exposure at 266 nm. Following digestion with restriction enzymes, fragments that had formed Z-DNA were isolated. Seventeen regions with Z-DNA sequence motifs in the 73-kb region were studied by PCR amplification, and five were found in the Z conformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Promoter and silencer elements of the immediate 5' flanking region of the gene coding for human factor VII were identified and characterized. The major transcription start site, designated as +1, was determined by RACE (rapid amplification of cDNA ends) analysis of human liver cDNA and was found to be located 50 bp upstream from the translation start site. Two minor transcription start sites were found at bp +32 bp and +37. Progressive deletions of the 5' flanking region were fused to the chloramphenicol acetyltransferase reporter gene and transient expression in HepG2 and HeLa cells was measured. Two promoter elements that were essential for hepatocyte-specific transcription were identified. The first site, FVIIP1, located at bp -19 to +1, functioned independently of orientation or position and contributed about one-third of the promoter activity of the factor VII gene. Electrophoretic mobility-shift, competition, and anti-hepatocyte nuclear factor 4 (HNF4) antibody supershift experiments demonstrated that this site contained an HNF-4 binding element homologous to the promoters in the genes coding for factor IX and factor X. The second site, FVIIP2, located at bp -50 to -26, also functioned independent of orientation or position and contributed about two thirds of the promoter activity in the gene for factor VII. Functional assays with mutant sequences demonstrated that a 10-bp G + C-rich core sequence which shares 90% sequence identity with the prothrombin gene enhancer was essential for the function of the second site. Mobility-shift and competition assays suggested that this site also binds hepatic-specific factors as well as the transcription factor Sp1. Two silencer elements located upstream of the promoter region spanning bp -130 to -103 (FVIIS1 site) and bp -202 to -130 (FVIIS2) were also identified by reporter gene assays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Epstein-Barr virus-encoded nuclear antigen EBNA-1 gene promoter for the restricted Epstein-Barr virus (EBV) latency program operating in group I Burkitt lymphoma (BL) cell lines was previously identified incorrectly. Here we present evidence from RACE (rapid amplification of cDNA ends) cloning, reverse transcription-PCR, and S1 nuclease analyses, which demonstrates that the EBNA-1 gene promoter in group I BL cell lines is located in the viral BamHI Q fragment, immediately upstream of two low-affinity EBNA-1 binding sites. Transcripts initiated from this promoter, referred to as Qp, have the previously reported Q/U/K exon splicing pattern. Qp is active in group I BL cell lines but not in group III BL cell lines or in EBV immortalized B-lymphoblastoid cell lines. In addition, transient transfection of Qp-driven reporter constructs into both an EBV-negative BL cell line and a group I BL cell line gave rise to correctly initiated transcripts. Inspection of Qp revealed that it is a TATA-less promoter whose architecture is similar to the promoters of housekeeping genes, suggesting that Qp may be a default promoter which ensures EBNA-1 expression in cells that cannot run the full viral latency program. Elucidation of the genetic mechanism responsible for the EBNA-1-restricted program of EBV latency is an essential step in understanding control of viral latency in EBV-associated tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ZNF91 gene family, a subset of the Krüppel-associated box (KRAB)-containing group of zinc finger genes, comprises more than 40 loci; most reside on human chromosome 19p12-p13.1. We have examined the emergence and evolutionary conservation of the ZNF91 family. ZNF91 family members were detected in all species of great apes, gibbons, Old World monkeys, and New World monkeys examined but were not found in prosimians or rodents. In each species containing the ZNF91 family, the genes were clustered at one major site, on the chromosome(s) syntenic to human chromosome 19. To identify a putative "founder" gene, > 20 murine KRAB-containing zinc finger protein (ZFP) cDNAs were randomly cloned, but none showed sequence similarity to the ZNF91 genes. These observations suggest that the ZNF91 gene cluster is a derived character specific to Anthropoidea, resulting from a duplication and amplification event some 55 million years ago in the common ancestor of simians. Although the ZNF91 gene cluster is present in all simian species, the sequences of the human ZNF91 gene that confer DNA-binding specificity were conserved only in great apes, suggesting that there is not a high selective pressure to maintain the DNA targets of these proteins during evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The homeotic gene complex (HOM-C) is a cluster of genes involved in the anteroposterior axial patterning of animal embryos. It is composed of homeobox genes belonging to the Hox/HOM superclass. Originally discovered in Drosophila, Hox/HOM genes have been identified in organisms as distantly related as arthropods, vertebrates, nematodes, and cnidarians. Data obtained in parallel from the organization of the complex, the domains of gene expression during embryogenesis, and phylogenetic relationships allow the subdivision of the Hox/HOM superclass into five classes (lab, pb/Hox3, Dfd, Antp, and Abd-B) that appeared early during metazoan evolution. We describe a search for homologues of these genes in platyhelminths, triploblast metazoans emerging as an outgroup to the great coelomate ensemble. A degenerate PCR screening for Hox/HOM homeoboxes in three species of triclad planarians has revealed 10 types of Antennapedia-like genes. The homeobox-containing sequences of these PCR fragments allowed the amplification of the homeobox-coding exons for five of these genes in the species Polycelis nigra. A phylogenetic analysis shows that two genes are clear orthologues of Drosophila labial, four others are members of a Dfd/Antp superclass, and a seventh gene, although more difficult to classify with certainty, may be related to the pb/Hox3 class. Together with previously identified Hox/HOM genes in other flatworms, our analyses demonstrate the existence of an elaborate family of Hox/HOM genes in the ancestor of all triploblast animals.