42 resultados para embryo sac
Resumo:
Disruptions of the genes encoding endothelin 3 (EDN3) and its receptor endothelin-B receptor (EDNRB) in the mouse result in defects of two neural crest (NC)-derived lineages, the melanocytes, and the enteric nervous system. To assess the mechanisms through which the EDN3/EDNRB signaling pathway can selectively act on these NC derivatives, we have studied the spatiotemporal expression pattern of the EDNRB gene in the avian embryo, a model in which NC development has been extensively studied. For this purpose, we have cloned the quail homologue of the mammalian EDNRB cDNA. EDNRB transcripts are present in NC cells before and during their emigration from the neural tube at all levels of the neuraxis. At later developmental stages, the receptor remains abundantly expressed in the peripheral nervous system including the enteric nervous system. In a previous study, we have shown that EDN3 enhances dramatically the proliferation of NC cells when they are at the pluripotent stage. We propose that the selective effect of EDN3 or EDNRB gene inactivation is due to the fact that both melanocytes and enteric nervous system precursors have to colonize large embryonic areas (skin and bowel) from a relatively small population of precursors that have to expand considerably in number. It is therefore understandable that a deficit in one of the growth-promoting pathways of NC cells has more deleterious effects on long-range migrating cells than on the NC derivatives which develop close to the neural primordium like the sensory and sympathetic ganglia.
Resumo:
The majority of T lymphocytes start to develop at around day 15 of gestation (d15)-d17 in the thymus and comprise the peripheral repertoire characterized by the expression of polymorphic T-cell antigen receptors (TCRs). Contrary to these conventional T cells, a subset of T cells, called natural killer (NK) T cells (most of them expressing an invariant TCR encoded by the Valpha14Jalpha281 gene with a 1-nt N-region), preferentially differentiates extrathymically and dominates the peripheral T-cell population at a high frequency (5% in splenic T cells and 40% in bone marrow T cells). Here, we investigated the development of NK T cells and found that the invariant Valpha14+ TCR transcripts and the circular DNA created by Valpha14 and Jalpha281 gene rearrangements can be detected in the embryo body at d9.5 of gestation and in the yolk sac and the fetal liver at d11.5-d13.5 of gestation, but not in the thymus, whereas T cells with Valpha1+ TCR expression, a major population in the thymus, were not observed at these early stages of gestation. Fluorescence-activated cell sorter analysis also demonstrated that there exist CD3+ alpha beta+ T cells, almost all of which are Valpha14/Vbeta8+ NK+ T cells, during early embryogenesis. To our knowledge, this demonstrates for the first time that a T lymphocyte subset develops in extrathymic tissues during the early stages of embryogenesis.
Resumo:
To identify changes in gene expression that occur in chicken embryo brain (CEB) cells as a consequence of their binding to the extracellular matrix molecule cytotactin/tenascin (CT/TN), a subtractive hybridization cloning strategy was employed. One of the cDNA clones identified was predicted to encode 381 amino acids and although it did not resemble any known sequences in the nucleic acid or protein data bases, it did contain the sequence motif for the cysteine-rich C3HC4 type of zinc finger, also known as a RING-finger. This sequence was therefore designated the chicken-RING zinc finger (C-RZF). In addition to the RING-finger, the C-RZF sequence also contained motifs for a leucine zipper, a nuclear localization signal, and a stretch of acidic amino acids similar to the activation domains of some transcription factors. Southern analysis suggested that C-RZF is encoded by a single gene. Northern and in situ hybridization analyses of E8 chicken embryo tissues indicated that expression of the C-RZF gene was restricted primarily to brain and heart. Western analysis of the nuclear and cytoplasmic fractions of chicken embryo heart cells and immunofluorescent staining of chicken embryo cardiocytes with anti-C-RZF antibodies demonstrated that the C-RZF protein was present in the nucleus. The data suggest that we have identified another member of the RING-finger family of proteins whose expression in CEB cells may be affected by CT/TN and whose nuclear localization and sequence motifs predict a DNA-binding function in the nucleus.
Resumo:
Presomitic and 3- to 12-somite pair cultured mouse embryos were deprived of retinoic acid (RA) by yolk-sac injections of antisense oligodeoxynucleotides for retinol binding protein (RBP). Inhibition of yolk-sac RBP synthesis was verified by immunohistochemistry, and the loss of activity of a lacZ-coupled RA-sensitive promoter demonstrated that embryos rapidly became RA-deficient. This deficiency resulted in malformations of the vitelline vessels, cranial neural tube, and eye, depending upon the stage of embryonic development at the time of antisense injection. Addition of RA to the culture medium at the time of antisense injection restored normal development implicating the role of RBP in embryonic RA synthesis. Furthermore, the induced RA deficiency resulted in early down-regulation of developmentally important genes including TGF-beta1 and Shh.
Resumo:
The uterine expression of leukemia inhibitory factor (LIF) is essential for embryo implantation in the mouse. Here, we describe the expression of LIF, related members of this group of cytokines, oncostatin M and ciliary neurotrophic factor, and the LIF receptor beta and glycoprotein gp130 in normal human tissues and in the endometrium of fertile women. Our results show that LIF is the only one of these factors expressed at detectable levels in the endometrium of women of proven fertility. LIF expression is restricted to the endometrial glands during the secretory/postovulatory phase but is not present in the endometrium during the proliferative/preovulatory phase. The LIF receptor beta is expressed during the proliferative and secretory phases of the cycle and is restricted to the luminal epithelium. The associated signal-transducing component of the LIF receptor, gp130, is also expressed in both the luminal and glandular epithelium throughout the cycle. These results suggest that uterine expression of LIF in humans, like mice, may have a role in regulating embryo implantation, possibly through an autocrine/paracrine interaction between LIF and its receptor at the luminal epithelium.
Resumo:
The presence of proteins associated with the CaCO3-containing biocrystals found in a wide variety of marine organisms is well established. In these organisms, including the primitive skeleton (spicule) of the sea urchin embryo, the structural and functional role of these proteins either in the biomineralization process or in control of the structural features of the biocrystals is unclear. Recently, one of the matrix proteins of the sea urchin spicule, SM 30, has been shown to contain a carbohydrate chain (the 1223 epitope) that has been implicated in the process whereby Ca2+ is deposited as CaCo3. Because an understanding of the localization of this protein, as well as other proteins found within the spicule, is central to understanding their function, we undertook to develop methods to localize spicule matrix proteins in intact spicules, using immunogold techniques and scanning electron microscopy. Gold particles indicative of this matrix glycoprotein could not be detected on the surface of spicules that had been isolated from embryo homogenates and treated with alkaline hypochlorite to remove any associated membranous material. However, when isolated spicules were etched for 2 min with dilute acetic acid (10 mM) to expose more internal regions of the crystal, SM 30 and perhaps other proteins bearing the 1223 carbohydrate epitope were detected in the calcite matrix. These results, indicating that these two antigens are widely distributed in the spicule, suggest that this technique should be applicable to any matrix protein for which antibodies are available.
Resumo:
HLA-G is a nonclassical class I major histocompatibility complex molecule with a restricted pattern of expression that includes the placental extravillus cytotrophoblast cells in direct contact with maternal tissues. Circumstantial evidence suggests that HLA-G may play a role in protection of the semiallogeneic human fetus. We examined whether HLA-G is expressed during the critical period of preimplantation human development and whether expression of this molecule could be correlated with the cleavage rate of embryos. Using reverse transcription PCR on surplus human embryos and unfertilized oocytes from patients undergoing in vitro fertilization we detected HLA-G heavy chain mRNA in 40% of 148 of blastocysts tested. The presence of HLA-G mRNA was also detected in unfertilized oocytes and in early embryos, but not in control cumulus oophorus cells. beta 2-Microglobulin mRNA was also found in those embryos expressing HLA-G. In concordance with our mRNA data, a similar proportion of embryos stained positive for HLA-G utilizing a specific monoclonal antibody. Interestingly, expression of HLA-G mRNA was associated with an increased cleavage rate, as compared to embryos lacking HLA-G transcript. Thus, HLA-G could be a functional homologue of the mouse Qa-2 antigen, which has been implicated in differences in the rate of preimplantation embryo development. To our knowledge, the presence of HLA-G mRNA and protein in human preimplantation embryos and oocytes has not been reported previously. The correlation of HLA-G mRNA expression with cleavage rate suggests that this molecule may play an important role in human pre-embryo development.
Resumo:
Previous research has shown that amphibians have differential sensitivity to ultraviolet-B (UV-B) radiation. In some species, ambient levels of UV-B radiation cause embryonic mortality in nature. The detrimental effects of UV-B alone or with other agents may ultimately affect amphibians at the population level. Here, we experimentally demonstrate a synergistic effect between UV-B radiation and a pathogenic fungus in the field that increases the mortality of amphibian embryos compared with either factor alone. Studies investigating single factors for causes of amphibian egg mortality or population declines may not reveal the complex factors involved in declines.
Resumo:
Using a reverse transcription-coupled PCR, we demonstrated that both brain and spleen type cannabinoid receptor (CB1-R and CB2-R, respectively) mRNAs are expressed in the preimplantation mouse embryo. The CB1-R mRNA expression was coincident with the activation of the embryonic genome late in the two-cell stage, whereas the CB2-R mRNA was present from the one-cell through the blastocyst stages. The major psychoactive component of marijuana (-)-delta-9-tetrahydrocannabinol [(-)-THC] inhibited forskolin-stimulated cAMP generation in the blastocyst, and this inhibition was prevented by pertussis toxin. However, the inactive cannabinoid cannabidiol (CBD) failed to influence this response. These results suggest that cannabinoid receptors in the embryo are coupled to inhibitory guanine nucleotide binding proteins. Further, the oviduct and uterus exhibited the enzymatic capacity to synthesize the putative endogenous cannabinoid ligand arachidonylethanolamide (anandamide). Synthetic and natural cannabinoid agonists [WIN 55,212-2, CP 55,940, (-)-THC, and anandamide], but not CBD or arachidonic acid, arrested the development of two-cell embryos primarily between the four-cell and eight-cell stages in vitro in a dose-dependent manner. Anandamide also interfered with the development of eight-cell embryos to blastocysts in culture. The autoradiographic studies readily detected binding of [3H]anandamide in embryos at all stages of development. Positive signals were present in one-cell embryos and all blastomeres of two-cell through four-cell embryos. However, most of the binding sites in eight-cell embryos and morulae were present in the outer cells. In the blastocyst, these signals were primarily localized in the mural trophectoderm with low levels of signals in the polar trophectoderm, while little or no signals were noted in inner cell mass cells.These results establish that the preimplantation mouse embryo is a target for cannabinoid ligands. Consequently, many of the adverse effects of cannabinoids observed during pregnancy could be mediated via these cannabinoid receptors. Although the physiological significance of the cannabinoid ligand-receptor signaling in normal preimplantation embryo development is not yet clear, the regulation of embryonic cAMP and/or Ca2+ levels via this signaling pathway may be important for normal embryonic development and/or implantation.
Resumo:
In the sea urchin embryo, the lineage founder cells whose polyclonal progenies will give rise to five different territories are segregated at the sixth division. To investigate the mechanisms by which the fates of embryonic cells are first established, we looked for temporal and spatial expression of homeobox genes in the very early cleavage embryos. We report evidence that PlHbox12, a paired homeobox-containing gene, is expressed in the embryo from the 4-cell stage. The abundance of the transcripts reaches its maximum when the embryo has been divided into the five polyclonal territories--namely at the 64-cell stage--and it abruptly declines at later stages of development. Blastomere dissociation experiments indicate that maximal expression of PlHbox12 is dependent on intercellular interactions, thus suggesting that signal transduction mechanisms are responsible for its transcriptional activation in the early cleavage embryo. Spatial expression of PlHbox12 was determined by whole-mount in situ hybridization. PlHbox12 transcripts in embryos at the fourth, fifth, and sixth divisions seem to be restricted to the conditionally specified ectodermal lineages. These results suggest a possible role of the PlHbox12 gene in the early events of cell specification of the presumptive ectodermal territories.
Resumo:
Programmed cell death (apoptosis) is an intrinsic part of organismal development and aging. Here we report that many nonsteroidal antiinflammatory drugs (NSAIDs) cause apoptosis when applied to v-src-transformed chicken embryo fibroblasts (CEFs). Cell death was characterized by morphological changes, the induction of tissue transglutaminase, and autodigestion of DNA. Dexamethasone, a repressor of cyclooxygenase (COX) 2, neither induced apoptosis nor altered the NSAID effect. Prostaglandin E2, the primary eicosanoid made by CEFs, also failed to inhibit apoptosis. Expression of the protooncogene bcl-2 is very low in CEFs and is not altered by NSAID treatment. In contrast, p20, a protein that may protect against apoptosis when fibroblasts enter G0 phase, was strongly repressed. The NSAID concentrations used here transiently inhibit COXs. Nevertheless, COX-1 and COX-2 mRNAs and COX-2 protein were induced. In some cell types, then, chronic NSAID treatment may lead to increased, rather than decreased, COX activity and, thus, exacerbate prostaglandin-mediated inflammatory effects. The COX-2 transcript is a partially spliced and nonfunctional form previously described. Thus, these findings suggest that COXs and their products play key roles in preventing apoptosis in CEFs and perhaps other cell types.
Resumo:
The scl gene encodes a basic-helix-loop-helix transcription factor which was identified through its involvement in chromosomal translocations in T-cell leukemia. To elucidate its physiological role, scl was targeted in embryonic stem cells. Mice heterozygous for the scl null mutation were intercrossed and their offspring were genotyped. Homozygous mutant (scl-/-) pups were not detected in newborn litters, and analysis at earlier time points demonstrated that scl-/- embryos were dying around embryonic day 9.5. The scl-/- embryos were pale, edematous, and markedly growth retarded after embryonic day 8.75. Histological studies showed complete absence of recognizable hematopoiesis in the yolk sac of these embryos. Early organogenesis appeared to be otherwise normal. Culture of yolk sac cells of wild-type, heterozygous, and homozygous littermates confirmed the absence of hematopoietic cells in scl-/- yolk sacs. Reverse transcription PCR was used to examine the transcripts of several genes implicated in early hematopoiesis. Transcripts of GATA-1 and PU.1 transcription factors were absent from RNA from scl-/- yolk sacs and embryos. These results implicate scl as a crucial regulator of early hematopoiesis.