39 resultados para ecological functions of mangrove
Resumo:
SH-PTP1 (also known as PTP1C, HCP, and SHP) is a non-transmembrane protein tyrosine phosphatase (PTPase) containing two tandem Src homology 2 (SH2) domains. We show here that the two SH2 (N-SH2 and C-SH2) domains in SH-PTP1 have different functions in regulation of the PTPase domain and thereby signal transduction. While the N-terminal SH2 domain is both necessary and sufficient for autoinhibition through an intramolecular association with the PTPase domain, truncation of the C-SH2 domain [SH-PTP1 (delta CSH2) construct] has little effect on SH-PTP1 activity. A synthetic phosphotyrosine residue (pY) peptide derived from the erythropoietin receptor (EpoR pY429) binds to the N-SH2 domain and activates both wild-type SH-PTP1 and SH-PTP1 (delta CSH2) 60- to 80-fold. Another pY peptide corresponding to a phosphorylation site on the IgG Fc receptor (Fc gamma RIIB1 pY309) associates with both the C-SH2 domain (Kd = 2.8 microM and the N-SH2 domain (Kd = 15.0 microM) and also activates SH-PTP1 12-fold. By analysis of the effect of the Fc gamma RIIB1 pY309 peptide on SH-PTP1 (delta CSH2), SH-PTP1 (R30K/R33E), SH-PTP1 (R30K/R136K), and SH-PTP1 (R136K) mutants in which the function of either the N- or C-SH2 domain has been impaired, we have determined that both synthetic pY peptides stimulate SH-PTP1 by binding to its N-SH2 domain; binding of pY ligand to the C-SH2 domain has no effect on SH-PTP1 activity. We propose that the N-terminal SH2 domain serves both as a regulatory domain and as a recruiting unit, whereas the C-terminal SH2 domain acts merely as a recruiting unit.
Resumo:
The recombinant human thyroid stimulating hormone (rhTSH) containing oligosaccharides terminated with NeuAc(alpha 2-3)Gal(beta 1-4)GlcNAc beta 1 showed higher in vivo activity and lower metabolic clearance rate (MCR) than pituitary human TSH (phTSH), which contains oligosaccharides terminating predominantly in SO(4)4GalNAc(beta 1-4)GlcNAc beta 1. To elucidate the relative contribution of the sulfated and sialylated carbohydrate chains of each subunit in the MCR and bioactivity of the hormone, the alpha and beta subunits of phTSH, rhTSH, and enzymatically desialylated rhTSH (asialo-rhTSH; asrhTSH) were isolated, their oligosaccharides were analyzed, and the respective subunits were dimerized in various combinations. The hybrids containing alpha subunit from phTSH or asrhTSH showed higher in vitro activity than those with alpha subunit from rhTSH, indicating that sialylation of alpha but not beta subunit attenuates the intrinsic activity of TSH. In contrast, hybrids with beta subunit from rhTSH displayed lower MCR compared to those with beta subunit from phTSH. The phTSH alpha-rhTSH beta hybrid had the highest in vivo bioactivity followed by rhTSH alpha-rhTSH beta, rhTSH alpha-phTSH beta, phTSH alpha-phTSH beta, and asrhTSH dimers. These differences indicated that hybrids with beta subunit from rhTSH displayed the highest in vivo activity and relatively low MCR, probably due to higher sialylation, more multiantennary structure, and/or the unique location of the beta-subunit oligosaccharide chain in the molecule. Thus, the N-linked oligosaccharides of the beta subunit of glycoprotein hormones have a more pronounced role than those from the alpha subunit in the metabolic clearance and thereby in the in vivo bioactivity. In contrast, the terminal residues of alpha-subunit oligosaccharides have a major impact on TSH intrinsic potency.
Resumo:
Alternative splicing of precursor messenger RNAs (pre-mRNAs) is an important mechanism for the regulation of gene expression. The members of the SR protein family of pre-mRNA splicing factors have distinct functions in promoting alternative splice site usage. Here we show that SR proteins are required for the first step of spliceosome assembly, interaction of the U1 small nuclear ribonucleoprotein complex (U1 snRNP) with the 5' splice site of the pre-mRNA. Further, we find that individual SR proteins have distinct abilities to promote interaction of U1 snRNP with alternative 5' splice junctions. These results suggest that SR proteins direct 5' splice site selection by regulation of U1 snRNP assembly onto the pre-mRNA.
Ecological factors rather than temporal factors dominate the evolution of vesicular stomatitis virus
Resumo:
Vesicular stomatitis New Jersey virus (VSV-NJ) is a rhabdovirus that causes economically important disease in cattle and other domestic animals in endemic areas from southeastern United States to northern South America. Its negatively stranded RNA genome is capable of undergoing rapid evolution, which allows phylogenetic analysis and molecular epidemiology studies to be performed. Previous epidemiological studies in Costa Rica showed the existence of at least two distinct ecological zones of high VSV-NJ activity, one located in the highlands (premontane tropical moist forest) and the other in the lowlands (tropical dry forest). We wanted to test the hypothesis that the viruses circulating in these ecological zones were genetically distinct. For this purpose, we sequenced the hypervariable region of the phosphoprotein gene for 50 VSV-NJ isolates from these areas. Phylogenetic analysis showed that viruses from each ecological zone had distinct genotypes. These genotypes were maintained in each area for periods of up to 8 years. This evolutionary pattern of VSV-NJ suggests an adaptation to ecological factors that could exert selective pressure on the virus. As previous data indicated an absence of virus adaptation to factors related to the bovine host (including immunological pressure), it appears that VSV genetic divergence represents positive selection to adapt to specific vectors and/or reservoirs at each ecological zone.
Resumo:
Saccharomyces cerevisiae is dimorphic and switches from a yeast form to a pseudohyphal (PH) form when starved for nitrogen. PH cells are elongated, bud in a unipolar manner, and invade the agar substrate. We assessed the requirements for actin in mediating the dramatic morphogenetic events that accompany the transition to PH growth. Twelve “alanine scan” alleles of the single yeast actin gene (ACT1) were tested for effects on filamentation, unipolar budding, agar invasion, and cell elongation. Some act1 mutations affect all phenotypes, whereas others affect only one or two aspects of PH growth. Tests of intragenic complementation among specific act1 mutations support the phenotypic evidence for multiple actin functions in filamentous growth. We present evidence that interaction between actin and the actin-binding protein fimbrin is important for PH growth and suggest that association of different actin-binding proteins with actin mediates the multiple functions of actin in filamentous growth. Furthermore, characterization of cytoskeletal structure in wild type and act1/act1 mutants indicates that PH cell morphogenesis requires the maintenance of a highly polarized actin cytoskeleton. Collectively, this work demonstrates that actin plays a central role in fungal dimorphism.
Resumo:
Rom2p is a GDP/GTP exchange factor for Rho1p and Rho2p GTPases; Rho proteins have been implicated in control of actin cytoskeletal rearrangements. ROM2 and RHO2 were identified in a screen for high-copy number suppressors of cik1Δ, a mutant defective in microtubule-based processes in Saccharomyces cerevisiae. A Rom2p::3XHA fusion protein localizes to sites of polarized cell growth, including incipient bud sites, tips of small buds, and tips of mating projections. Disruption of ROM2 results in temperature-sensitive growth defects at 11°C and 37°C. rom2Δ cells exhibit morphological defects. At permissive temperatures, rom2Δ cells often form elongated buds and fail to form normal mating projections after exposure to pheromone; at the restrictive temperature, small budded cells accumulate. High-copy number plasmids containing either ROM2 or RHO2 suppress the temperature-sensitive growth defects of cik1Δ and kar3Δ strains. KAR3 encodes a kinesin-related protein that interacts with Cik1p. Furthermore, rom2Δ strains exhibit increased sensitivity to the microtubule depolymerizing drug benomyl. These results suggest a role for Rom2p in both polarized morphogenesis and functions of the microtubule cytoskeleton.
Resumo:
Although extensively studied biochemically, members of the Protein 4.1 superfamily have not been as well characterized genetically. Studies of coracle, a Drosophila Protein 4.1 homologue, provide an opportunity to examine the genetic functions of this gene family. coracle was originally identified as a dominant suppressor of EgfrElp, a hypermorphic form of the Drosophila Epidermal growth factor receptor gene. In this article, we present a phenotypic analysis of coracle, one of the first for a member of the Protein 4.1 superfamily. Screens for new coracle alleles confirm the null coracle phenotype of embryonic lethality and failure in dorsal closure, and they identify additional defects in the embryonic epidermis and salivary glands. Hypomorphic coracle alleles reveal functions in many imaginal tissues. Analysis of coracle mutant cells indicates that Coracle is a necessary structural component of the septate junction required for the maintenance of the transepithelial barrier but is not necessary for apical–basal polarity, epithelial integrity, or cytoskeletal integrity. In addition, coracle phenotypes suggest a specific role in cell signaling events. Finally, complementation analysis provides information regarding the functional organization of Coracle and possibly other Protein 4.1 superfamily members. These studies provide insights into a range of in vivo functions for coracle in developing embryos and adults.
Resumo:
In the 7 years since dynamin was first isolated from bovine brain in search of novel microtubule-based motors, our understanding of this enzyme has expanded significantly. We now know that brain dynamin belongs to a family of large GTPases, which mediate vesicle trafficking. Furthermore, this enzymatic activity is markedly increased through association with microtubules, acidic phospholipids, and certain regulatory proteins that contain Src homology 3 (SH3) domains. From functional, genetic, and cellular manipulations, it is now generally accepted that dynamin participates in the endocytic uptake of receptors, associated ligands, and plasma membrane following an exocytic event. These observations have confirmed at least one function of dynamin that was predicted from seminal studies on a pleiotropic mutant, shibirets (shits) in Drosophila melanogaster. Of equal interest is the finding that there are multiple dynamin gene products, including two that are expressed in a tissue-specific manner, and they share marked homology with a larger family of distinct but related proteins. Therefore, it is attractive to speculate that the different dynamins may participate in related cellular functions, such as distinct endocytic processes and even secretion. In turn, dynamin could play an important role in cell growth, cell spreading, and neurite outgrowth. The purpose of this review is to enumerate on the expansive dynamin literature and to discuss the nomenclature, expression, and putative functions of this growing and interesting family of proteins.
Resumo:
The proper placement of the Escherichia coli division septum requires the MinE protein. MinE accomplishes this by imparting topological specificity to a division inhibitor coded by the minC and minD genes. As a result, the division inhibitor prevents septation at potential division sites that exist at the cell poles but permits septation at the normal division site at midcell. In this paper, we define two functions of MinE that are required for this effect and present evidence that different domains within the 88-amino acid MinE protein are responsible for each of these two functions. The first domain, responsible for the ability of MinE to counteract the activity of the MinCD division inhibitor, is located in a small region near the N terminus of the protein. The second domain, required for the topological specificity of MinE function, is located in the more distal region of the protein and affects the site specificity of placement of the division septum even when separated from the domain responsible for suppression of the activity of the division inhibitor.