57 resultados para coding sequence
Resumo:
We have molecularly cloned a cDNA encoding a protein uniquely expressed and hyperphosphorylated at tyrosine residues in a Ki-1 lymphoma cell that contained chromosomal translocation t(2;5). The encoded protein p80 was shown to be generated by fusion of a protein-tyrosine kinase and a nucleolar protein B23/nucleophosmin (NPM). The coding sequence of this cDNA turned out to be virtually identical to that of the fusion cDNA for NPM-anaplastic lymphoma kinase (ALK) previously cloned from the transcript of the gene at the breakpoint of the same translocation. Overexpression of p80 in NIH 3T3 cells induced neoplastic transformation, suggesting that the p80 kinase is aberrantly activated. The normal form of p80 was predicted to be a receptor-type tyrosine kinase on the basis of its sequence similarity to the insulin receptor family of kinases. However, an immunofluorescence study using COS cells revealed that p80 was localized to the cytoplasm. Thus, subcellular translocation and activation of the tyrosine kinase presumably by its structural alteration would cause the malignant transformation. We also showed that a mutant p80 lacking the NPM portion was unable to transform NIH 3T3 cells. Thus, the NPM sequence is essential for the transforming activity, suggesting that the chromosomal translocation is responsible for the oncogenesis. Finally, Shc and insulin receptor substrate 1 (IRS-1) were tyrosine-phosphorylated and bound to p80 in p80-transformed cells. However, mutants of p80 that were defective for binding to and phosphorylation of Shc and insulin receptor substrate 1 could transform NIH 3T3 cells. Association of these mutants with GRB2 was still observed, suggesting that interaction of p80 with GRB2 but not with Shc or IRS-1 was relevant for cell transformation.
Resumo:
Mutations in the gene encoding the endothelin receptor type B (EDNRB) produce congenital aganglionic megacolon and pigment abnormalities in mice and humans. Here we report a naturally occurring null mutation of the EDNRB gene in spotting lethal (sl) rats, which exhibit aganglionic megacolon associated with white coat color. We found a 301-bp deletion spanning the exon 1-intron 1 junction of the EDNRB gene in sl rats. A restriction fragment length polymorphism caused by this deletion perfectly cosegregates with the sl phenotype. The deletion leads to production of an aberrantly spliced EDNRB mRNA that lacks the coding sequence for the first and second putative transmembrane domains of the G-protein-coupled receptor. Radioligand binding assays revealed undetectable levels of functional EDNRB in tissues from homozygous sl/sl rats. We conclude that EDNRB plays an essential role in the normal development of two neural crest-derived cell lineages, epidermal melanocytes and enteric neurons, in three mammalian species--humans, mice, and rats. The EDNRB-deficient rat may also prove valuable in defining the postnatal physiologic role of this receptor.
Resumo:
Brain-derived neurotrophic factor (BDNF), a member of the nerve growth factor (NGF) gene family, has been shown to influence the survival and differentiation of specific classes of neurons in vitro and in vivo. The possibility that neurotrophins are also involved in processes of neuronal plasticity has only recently begun to receive attention. To determine whether BDNF has a function in processes such as long-term potentiation (LTP), we produced a strain of mice with a deletion in the coding sequence of the BDNF gene. We then used hippocampal slices from these mice to investigate whether LTP was affected by this mutation. Homo- and heterozygous mutant mice showed significantly reduced LTP in the CA1 region of the hippocampus. The magnitude of the potentiation, as well as the percentage of cases in which LTP could be induced successfully, was clearly affected. According to the criteria tested, important pharmacological, anatomical, and morphological parameters in the hippocampus of these animals appear to be normal. These results suggest that BDNF might have a functional role in the expression of LTP in the hippocampus.
Resumo:
We demonstrate that the cauliflower mosaic virus (CaMV) gene VI product can transactivate the expression of a reporter gene in bakers' yeast, Saccharomyces cerevisiae. The gene VI coding sequence was placed under the control of the galactose-inducible promoter GAL1, which is presented in the yeast shuttle vector pYES2, to create plasmid JS169. We also created a chloramphenicol acetyltransferase (CAT) reporter plasmid, JS161, by inserting the CAT reporter gene in-frame into CaMV gene II and subsequently cloning the entire CaMV genome into the yeast vector pRS314. When JS161 was transformed into yeast and subsequently assayed for CAT activity, only a very low level of CAT activity was detected in cellular extracts. To investigate whether the CaMV gene VI product would mediate an increase in CAT activity, we cotransformed yeast with JS169 and JS161. Upon induction with galactose, we found that CAT activity in yeast transformed with JS161 and JS169 was about 19 times higher than the level in the transformants that contained only JS161. CAT activity was dependent on the presence of the gene VI protein, because essentially no CAT activity was detected in yeast cells grown in the presence of glucose, which represses expression from the GAL1 promoter. RNase protection assays showed that the gene VI product had no effect on transcription from the 35S RNA promoter, demonstrating that regulation was occurring at the translation level. This yeast system will prove useful for understanding how the gene VI product of CaMV mediates the translation of genes present on a eukaryotic polycistronic mRNA.
Resumo:
The gene encoding human plakoglobin was mapped to chromosome 17q12-q22. An intragenic restriction fragment length polymorphism was used to localize the plakoglobin gene distal to locus KRT10 and proximal to the marker D17S858. The plakoglobin gene colocalizes with the polymorphic 17q21 marker UM8 on the same cosmid insert. This subregion of chromosome 17 is known to be particularly subjected to genetic alterations in sporadic breast and ovarian tumors. We show loss of heterozygosity of the plakoglobin gene in breast and ovarian tumors. We have identified a low-frequency polymorphism in the plakoglobin coding sequence which results in an arginine to histidine substitution at amino acid position 142 of the protein, as well as a silent mutation at nucleotide position 332 of the coding sequence. This polymorphism allowed us to demonstrate an allelic association of plakoglobin with predisposition to familial breast and ovarian cancers. Our results, together with the present knowledge about the biological function of plakoglobin, suggest that plakoglobin might represent a putative tumor suppressor gene for breast and ovarian cancers.
Resumo:
The biosynthesis of gibberellins (GAs) after GA12-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11.-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidase gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA53 to GA44 and GA19 to GA20. The Arabidopsis GA 20-oxidase shares 55% identity and > 80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA5 locus of Arabidopsis. The ga5 semidwarf mutant contains a G-->A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Ara-bidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA4 treatment, suggesting end-product repression in the GA biosynthetic pathway.
Resumo:
The Wiskott-Aldrich syndrome (WAS) is an X-chromosome-linked recessive disease characterized by eczema, thrombocytopenia, and immunodeficiency. The disease gene has been localized to the proximal short arm of the X chromosome and recently isolated through positional cloning. The function of the encoded protein remains undetermined. In this study we have characterized mutations in 12 unrelated patients to confirm the identity of the disease gene. We have also revised the coding sequence and genomic structure for the WAS gene. To analyze further the transmittance of the disease gene, we have characterized a polymorphic microsatellite at the DXS6940 locus within 30 kb of the gene and demonstrate the inheritance of the affected alleles in families with a history of WAS.
Resumo:
Fractionation of the abundant small ribonucleoproteins (RNPs) of the trypanosomatid Leptomonas collosoma revealed the existence of a group of unidentified small RNPs that were shown to fractionate differently than the well-characterized trans-spliceosomal RNPs. One of these RNAs, an 80-nt RNA, did not possess a trimethylguanosine (TMG) cap structure but did possess a 5′ phosphate terminus and an invariant consensus U5 snRNA loop 1. The gene coding for the RNA was cloned, and the coding region showed 55% sequence identity to the recently described U5 homologue of Trypanosoma brucei [Dungan, J. D., Watkins, K. P. & Agabian, N. (1996) EMBO J. 15, 4016–4029]. The L. collosoma U5 homologue exists in multiple forms of RNP complexes, a 10S monoparticle, and two subgroups of 18S particles that either contain or lack the U4 and U6 small nuclear RNAs, suggesting the existence of a U4/U6⋅U5 tri-small nuclear RNP complex. In contrast to T. brucei U5 RNA (62 nt), the L. collosoma homologue is longer (80 nt) and possesses a second stem–loop. Like the trypanosome U3, U6, and 7SL RNA genes, a tRNA gene coding for tRNACys was found 98 nt upstream to the U5 gene. A potential for base pair interaction between U5 and SL RNA in the 5′ splice site region (positions −1 and +1) and downstream from it is proposed. The presence of a U5-like RNA in trypanosomes suggests that the most essential small nuclear RNPs are ubiquitous for both cis- and trans-splicing, yet even among the trypanosomatids the U5 RNA is highly divergent.
Resumo:
The influenza C virus CM2 protein is a small glycosylated integral membrane protein (115 residues) that spans the membrane once and contains a cleavable signal sequence at its N terminus. The coding region for CM2 (CM2 ORF) is located at the C terminus of the 342-amino acid (aa) ORF of a colinear mRNA transcript derived from influenza C virus RNA segment 6. Splicing of the colinear transcript introduces a translational stop codon into the ORF and the spliced mRNA encodes the viral matrix protein (CM1) (242 aa). The mechanism of CM2 translation was investigated by using in vitro and in vivo translation of RNA transcripts. It was found that the colinear mRNA derived from influenza C virus RNA segment 6 serves as the mRNA for CM2. Furthermore, CM2 translation does not depend on any of the three in-frame methionine residues located at the beginning of CM2 ORF. Rather, CM2 is a proteolytic cleavage product of the p42 protein product encoded by the colinear mRNA: a cleavage event that involves the recognition and cleavage of an internal signal peptide presumably by signal peptidase resident in the endoplasmic reticulum. Alteration of the predicted signal peptidase cleavage site by mutagenesis blocked generation of CM2. The other polypeptide species resulting from the cleavage of p42, designated p31, contains the CM1 coding region and an additional C-terminal 17 aa (formerly the CM2 signal peptide). Protein p31, in comparison to CM1, displays characteristics of an integral membrane protein.
Resumo:
The intensely studied MHC has become the paradigm for understanding the architectural evolution of vertebrate multigene families. The 4-Mb human MHC (also known as the HLA complex) encodes genes critically involved in the immune response, graft rejection, and disease susceptibility. Here we report the continuous 1,796,938-bp genomic sequence of the HLA class I region, linking genes between MICB and HLA-F. A total of 127 genes or potentially coding sequences were recognized within the analyzed sequence, establishing a high gene density of one per every 14.1 kb. The identification of 758 microsatellite provides tools for high-resolution mapping of HLA class I-associated disease genes. Most importantly, we establish that the repeated duplication and subsequent diversification of a minimal building block, MIC-HCGIX-3.8–1-P5-HCGIV-HLA class I-HCGII, engendered the present-day MHC. That the currently nonessential HLA-F and MICE genes have acted as progenitors to today’s immune-competent HLA-ABC and MICA/B genes provides experimental evidence for evolution by “birth and death,” which has general relevance to our understanding of the evolutionary forces driving vertebrate multigene families.
Resumo:
The cell matrix adhesion regulator (CMAR) gene has been suggested to be a signal transduction molecule influencing cell adhesion to collagen and, through this, possibly involved in tumor suppression. The originally reported CMAR cDNA was 464 bp long with a tyrosine phosphorylation site at the extreme 3′ end, which mutagenesis studies had shown to be central to the function of this gene. Since the discovery of a 4-bp insertion polymorphism within the originally reported coding region, further sequence information has been obtained. The cDNA has been extended 5′ by ≈2 kb revealing a 559-bp region showing strong homology to the proposed 5′ untranslated sequence of a murine protein kinase receptor family member, variant in kinase (vik). CMAR genomic sequencing has shown the presence of an intron, the intron/exon boundary lying within this region of homology. An RNA transcript for CMAR of ≈2.5 kb has also been identified. The data suggest complex mechanisms for control of expression of two closely associated genes, CMAR and the vik- associated sequence.
Resumo:
The genome of the Kaposi sarcoma-associated herpesvirus (KSHV or HHV8) was mapped with cosmid and phage genomic libraries from the BC-1 cell line. Its nucleotide sequence was determined except for a 3-kb region at the right end of the genome that was refractory to cloning. The BC-1 KSHV genome consists of a 140.5-kb-long unique coding region flanked by multiple G+C-rich 801-bp terminal repeat sequences. A genomic duplication that apparently arose in the parental tumor is present in this cell culture-derived strain. At least 81 ORFs, including 66 with homology to herpesvirus saimiri ORFs, and 5 internal repeat regions are present in the long unique region. The virus encodes homologs to complement-binding proteins, three cytokines (two macrophage inflammatory proteins and interleukin 6), dihydrofolate reductase, bcl-2, interferon regulatory factors, interleukin 8 receptor, neural cell adhesion molecule-like adhesin, and a D-type cyclin, as well as viral structural and metabolic proteins. Terminal repeat analysis of virus DNA from a KS lesion suggests a monoclonal expansion of KSHV in the KS tumor.
Resumo:
Gephyrin is essential for both the postsynaptic localization of inhibitory neurotransmitter receptors in the central nervous system and the biosynthesis of the molybdenum cofactor (Moco) in different peripheral organs. Several alternatively spliced gephyrin transcripts have been identified in rat brain that differ in their 5′ coding regions. Here, we describe gephyrin splice variants that are differentially expressed in non-neuronal tissues and different regions of the adult mouse brain. Analysis of the murine gephyrin gene indicates a highly mosaic organization, with eight of its 29 exons corresponding to the alternatively spliced regions identified by cDNA sequencing. The N- and C-terminal domains of gephyrin encoded by exons 3–7 and 16–29, respectively, display sequence similarities to bacterial, invertebrate, and plant proteins involved in Moco biosynthesis, whereas the central exons 8, 13, and 14 encode motifs that may mediate oligomerization and tubulin binding. Our data are consistent with gephyrin having evolved from a Moco biosynthetic protein by insertion of protein interaction sequences.
Resumo:
We present here the complete genome sequence of a common avian clone of Pasteurella multocida, Pm70. The genome of Pm70 is a single circular chromosome 2,257,487 base pairs in length and contains 2,014 predicted coding regions, 6 ribosomal RNA operons, and 57 tRNAs. Genome-scale evolutionary analyses based on pairwise comparisons of 1,197 orthologous sequences between P. multocida, Haemophilus influenzae, and Escherichia coli suggest that P. multocida and H. influenzae diverged ≈270 million years ago and the γ subdivision of the proteobacteria radiated about 680 million years ago. Two previously undescribed open reading frames, accounting for ≈1% of the genome, encode large proteins with homology to the virulence-associated filamentous hemagglutinin of Bordetella pertussis. Consistent with the critical role of iron in the survival of many microbial pathogens, in silico and whole-genome microarray analyses identified more than 50 Pm70 genes with a potential role in iron acquisition and metabolism. Overall, the complete genomic sequence and preliminary functional analyses provide a foundation for future research into the mechanisms of pathogenesis and host specificity of this important multispecies pathogen.