258 resultados para cellular nucleic acid-binding protein
Resumo:
Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombination, and repair in bacteria and eukarya. We report here the identification and characterization of the SSB of an archaeon, Methanococcus jannaschii. The M. jannaschii SSB (mjaSSB) has significant amino acid sequence similarity to the eukaryotic SSB, replication protein A (RPA), and contains four tandem repeats of the core single-stranded DNA (ssDNA) binding domain originally defined by structural studies of RPA. Homologous SSBs are encoded by the genomes of other archaeal species, including Methanobacterium thermoautotrophicum and Archaeoglobus fulgidus. The purified mjaSSB binds to ssDNA with high affinity and selectivity. The apparent association constant for binding to ssDNA is similar to that of RPA under comparable experimental conditions, and the affinity for ssDNA exceeds that for double-stranded DNA by at least two orders of magnitude. The binding site size for mjaSSB is ≈20 nucleotides. Given that RPA is related to mjaSSB at the sequence level and to Escherichia coli SSB at the structural level, we conclude that the SSBs of archaea, eukarya, and bacteria share a common core ssDNA-binding domain. This ssDNA-binding domain was presumably present in the common ancestor to all three major branches of life.
Resumo:
β-catenin, the vertebrate homolog of the Drosophila Armadillo protein, has been shown to have dual cellular functions, as a component of both the cadherin-catenin cell adhesion complex and the Wnt signaling pathway. At Wnt signaling, β-catenin becomes stabilized in the cytoplasm and subsequently available for interaction with transcription factors of the lymphocyte enhancer factor-1/T-cell factor family, resulting in a nuclear localization of β-catenin. Although β-catenin does not bind DNA directly, its carboxyl- and amino-terminal regions exhibit a transactivating activity still not well understood molecularly. Here we report the identification of an interaction partner of β-catenin, a nuclear protein designated Pontin52. Pontin52 binds β-catenin in the region of Armadillo repeats 2–5 and, more importantly, also binds the TATA box binding protein. We provide evidence for an in vivo multiprotein complex composed of Pontin52, β-catenin, and lymphocyte enhancer factor-1/T-cell factor. Our results suggest involvement of Pontin52 in the nuclear function of β-catenin.
Resumo:
In cells infected with HIV type 1 (HIV-1), the integrated viral promoter is present in a chromatin-bound conformation and is transcriptionally silent in the absence of stimulation. The HIV-1 Tat protein binds to a stem-loop structure at the 5′ end of viral mRNA and relieves this inhibition by inducing a remodeling of the nucleosome arrangement downstream of the transcription-initiation site. Here we show that Tat performs this activity by recruiting to the viral long terminal repeat (LTR) the transcriptional coactivator p300 and the closely related CREB-binding protein (CBP), having histone acetyltransferase (HAT) activity. Tat associates with HAT activity in human nuclear extracts and binds to p300 and CBP both in vitro and in vivo. Integrity of the basic domain of Tat is essential for this interaction. By a quantitative chromatin immunoprecipitation assay we show that the delivery of recombinant Tat induces the association of p300 and CBP with the chromosomally integrated LTR promoter. Expression of human p300 in both human and rodent cells increases the levels of Tat transactivation of the integrated LTR. These results reinforce the evidence that p300 and CBP have a pivotal function at both cellular and viral promoters and demonstrate that they also can be recruited by an RNA-targeted activator. Additionally, these findings have important implications for the understanding of the mechanisms of HIV-1 latency and reactivation.
Resumo:
Subcellular targeting and the activity of facilitative glucose transporters are likely to be regulated by interactions with cellular proteins. This report describes the identification and characterization of a protein, GLUT1 C-terminal binding protein (GLUT1CBP), that binds via a PDZ domain to the C terminus of GLUT1. The interaction requires the C-terminal four amino acids of GLUT1 and is isoform specific because GLUT1CBP does not interact with the C terminus of GLUT3 or GLUT4. Most rat tissues examined contain both GLUT1CBP and GLUT1 mRNA, whereas only small intestine lacked detectable GLUT1CBP protein. GLUT1CBP is also expressed in primary cultures of neurons and astrocytes, as well as in Chinese hamster ovary, 3T3-L1, Madin–Darby canine kidney, Caco-2, and pheochromocytoma-12 cell lines. GLUT1CBP is able to bind to native GLUT1 extracted from cell membranes, self-associate, or interact with the cytoskeletal proteins myosin VI, α-actinin-1, and the kinesin superfamily protein KIF-1B. The presence of a PDZ domain places GLUT1CBP among a growing family of structural and regulatory proteins, many of which are localized to areas of membrane specialization. This and its ability to interact with GLUT1 and cytoskeletal proteins implicate GLUT1CBP in cellular mechanisms for targeting GLUT1 to specific subcellular sites either by tethering the transporter to cytoskeletal motor proteins or by anchoring the transporter to the actin cytoskeleton.
Resumo:
Proteins containing the EF-hand Ca2+-binding motif, such as calmodulin and calcineurin B, function as regulators of various cellular processes. Here we focus on p22, an N-myristoylated, widely expressed EF-hand Ca2+-binding protein conserved throughout evolution, which was shown previously to be required for membrane traffic. Immunofluorescence studies show that p22 distributes along microtubules during interphase and mitosis in various cell lines. Moreover, we report that p22 associates with the microtubule cytoskeleton indirectly via a cytosolic microtubule-binding factor. Gel filtration studies indicate that the p22–microtubule-binding activity behaves as a 70- to 30-kDa globular protein. Our results indicate that p22 associates with microtubules via a novel N-myristoylation–dependent mechanism that does not involve classic microtubule-associated proteins and motor proteins. The association of p22 with microtubules requires the N-myristoylation of p22 but does not involve p22’s Ca2+-binding activity, suggesting that the p22–microtubule association and the role of p22 in membrane traffic are functionally related, because N-myristoylation is required for both events. Therefore, p22 is an excellent candidate for a protein that can mediate interactions between the microtubule cytoskeleton and membrane traffic.
Resumo:
Phenylamidine cationic groups linked by a furan ring (furamidine) and related compounds bind as monomers to AT sequences of DNA. An unsymmetric derivative (DB293) with one of the phenyl rings of furamidine replaced with a benzimidazole has been found by quantitative footprinting analyses to bind to GC-containing sites on DNA more strongly than to pure AT sequences. NMR structural analysis and surface plasmon resonance binding results clearly demonstrate that DB293 binds in the minor groove at specific GC-containing sequences of DNA in a highly cooperative manner as a stacked dimer. Neither the symmetric bisphenyl nor bisbenzimidazole analogs of DB293 bind significantly to the GC containing sequences. DB293 provides a paradigm for design of compounds for specific recognition of mixed DNA sequences and extends the boundaries for small molecule-DNA recognition.
Resumo:
Hypertonicity (most often present as high salinity) is stressful to the cells of virtually all organisms. Cells survive in a hypertonic environment by increasing the transcription of genes whose products catalyze cellular accumulation of compatible osmolytes. In mammals, the kidney medulla is normally hypertonic because of the urinary concentrating mechanism. Cellular accumulation of compatible osmolytes in the renal medulla is catalyzed by the sodium/myo-inositol cotransporter (SMIT), the sodium/chloride/betaine cotransporter, and aldose reductase (synthesis of sorbitol). The importance of compatible osmolytes is underscored by the necrotic injury of the renal medulla and subsequent renal failure that results from the inhibition of SMIT in vivo by administration of a specific inhibitor. Tonicity-responsive enhancers (TonE) play a key role in hypertonicity-induced transcriptional stimulation of SMIT, sodium/chloride/betaine cotransporter, and aldose reductase. We report the cDNA cloning of human TonE binding protein (TonEBP), a transcription factor that stimulates transcription through its binding to TonE sequences via a Rel-like DNA binding domain. Western blot and immunohistochemical analyses of cells cultured in hypertonic medium reveal that exposure to hypertonicity elicits slow activation of TonEBP, which is the result of an increase in TonEBP amount and translocation to the nucleus.
Resumo:
Conversion of a malignant phenotype into a more normal one can be accomplished either by down-regulation of erbB family surface receptors or by creating inactive erbB heterodimers on the cell surface. In this report, we report the identification and cloning of differentially expressed genes from antibody-treated vs. untreated fibroblasts transformed by oncogenic p185neu. We repeatedly isolated a 325-bp cDNA fragment that, as determined by Northern analysis, was expressed at higher levels in anti-p185neu-treated tumor cells but not in cells expressing internalization defective p185neu receptors. This cDNA fragment was identical in amino acid sequence to the recently cloned mouse Tat binding protein-1 (mTBP1), which has 98.4% homology to the HIV tat-binding protein-1 (TBP1). TBP1 mRNA levels were found to be elevated on inhibition of the oncogenic phenotype of transformed cells expressing erbB family receptors. TBP1 overexpression diminished cell proliferation, reduced the ability of the parental cells to form colonies in vitro, and almost completely inhibited transforming efficiency in athymic mice when stably expressed in human tumor cells containing erbB family receptors. Collectively, these results suggest that the attenuation of erbB receptor signaling seems to be associated with activation/induction or recovery of a functional tumor suppressor-like gene, TBP1. Disabling erbB tyrosine kinases by antibodies or by trans-inhibition represents an initial step in triggering a TBP1 pathway.
Resumo:
GABAergic (GABA = γ-aminobutyric acid) neurons from different brain regions contain high levels of parvalbumin, both in their soma and in their neurites. Parvalbumin is a slow Ca2+ buffer that may affect the amplitude and time course of intracellular Ca2+ transients in terminals after an action potential, and hence may regulate short-term synaptic plasticity. To test this possibility, we have applied paired-pulse stimulations (with 30- to 300-ms intervals) at GABAergic synapses between interneurons and Purkinje cells, both in wild-type (PV+/+) mice and in parvalbumin knockout (PV−/−) mice. We observed paired-pulse depression in PV+/+ mice, but paired-pulse facilitation in PV−/− mice. In paired recordings of connected interneuron-Purkinje cells, dialysis of the presynaptic interneuron with the slow Ca2+ buffer EGTA (1 mM) rescues paired-pulse depression in PV−/− mice. These data show that parvalbumin potently modulates short-term synaptic plasticity.
Resumo:
The evolutionarily conserved protein EB1 originally was identified by its physical association with the carboxyl-terminal portion of the adenomatous polyposis coli (APC) tumor suppressor protein, an APC domain commonly mutated in familial and sporadic forms of colorectal neoplasia. The subcellular localization of EB1 in epithelial cells was studied by using immunofluorescence and biochemical techniques. EB1 colocalized both to cytoplasmic microtubules in interphase cells and to spindle microtubules during mitosis, with pronounced centrosome staining. The cytoskeletal array detected by anti-EB1 antibody was abolished by incubation of the cells with nocodazole, an agent that disrupts microtubules; upon drug removal, EB1 localized to the microtubule-organizing center. Immunofluorescence analysis of SW480, a colon cancer cell line that expresses only carboxyl-terminal-deleted APC unable to interact with EB1, demonstrated that EB1 remained localized to the microtubule cytoskeleton, suggesting that this pattern of subcellular distribution is not mediated by its interaction with APC. In vitro cosedimentation with taxol-stabilized microtubules demonstrated that a significant fraction of EB1 associated with microtubules. Recent studies of the yeast EB1 homologues Mal3 and Bim1p have demonstrated that both proteins localize to microtubules and are important in vivo for microtubule function. Our results demonstrate that EB1 is a novel component of the microtubule cytoskeleton in mammalian cells. Associating with the mitotic apparatus, EB1 may play a physiologic role connecting APC to cellular division, coordinating the control of normal growth and differentiation processes in the colonic epithelium.
Resumo:
The nuclear LIM domain protein LMO2, a T cell oncoprotein, is essential for embryonic erythropoiesis. LIM-only proteins are presumed to act primarily through protein-protein interactions. We, and others, have identified a widely expressed protein, Ldb1, whose C-terminal 76-residues are sufficient to mediate interaction with LMO2. In murine erythroleukemia cells, the endogenous Lbd1 and LMO2 proteins exist in a stable complex, whose binding affinity appears greater than that between LMO2 and the bHLH transcription factor SCL. However, Ldb1, LMO2, and SCL/E12 can assemble as a multiprotein complex on a consensus SCL binding site. Like LMO2, the Ldb1 gene is expressed in fetal liver and erythroid cell lines. Forced expression of Ldb1 in G1ER proerythroblast cells inhibited cellular maturation, a finding compatible with the decrease in Ldb1 gene expression that normally occurs during erythroid differentiation. Overexpression of the LMO2 gene also inhibited erythroid differentiation. Our studies demonstrate a function for Ldb1 in hemopoietic cells and suggest that one role of the Ldb1/LMO2 complex is to maintain erythroid precursors in an immature state.
Resumo:
The current paper describes a line of cultured rat hepatoma cells (McA-RH7777 cells) that mimics the behavior of rat liver by producing an excess of mRNA for sterol regulatory element-binding protein 1c (SREBP-1c) as opposed to SREBP-1a. These two transcripts are derived from a single gene by use of alternative promoters that are separated by many kilobases in the genome. The high level of SREBP-1c mRNA is abolished when cholesterol synthesis is blocked by compactin, an inhibitor of 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase that inhibits cholesterol synthesis. Levels of SREBP-1c mRNA are restored by mevalonate, the product of the HMG CoA reductase reaction, and by ligands for the nuclear hormone receptor LXR, including 22(R)-hydroxycholesterol and T0901317. These data suggest that transcription of the SREBP-1c gene in hepatocytes requires tonic activation of LXR by an oxysterol intermediate in the cholesterol biosynthetic pathway. Reduction of this intermediate lowers SREBP-1c levels, and this in turn is predicted to lower the rates of fatty acid biosynthesis in liver.
Resumo:
Single-stranded DNA binding proteins (SSBs) play central roles in cellular and viral processes involving the generation of single-stranded DNA. These include DNA replication, homologous recombination and DNA repair pathways. SSBs bind DNA using four ‘OB-fold’ (oligonucleotide/oligosaccharide binding fold) domains that can be organised in a variety of overall quaternary structures. Thus eubacterial SSBs are homotetrameric whilst the eucaryal RPA protein is a heterotrimer and euryarchaeal proteins vary significantly in their subunit compositions. We demonstrate that the crenarchaeal SSB protein is an abundant protein with a unique structural organisation, existing as a monomer in solution and multimerising on DNA binding. The protein binds single-stranded DNA distributively with a binding site size of ~5 nt per monomer. Sulfolobus SSB lacks the zinc finger motif found in the eucaryal and euryarchaeal proteins, possessing instead a flexible C-terminal tail, sensitive to trypsin digestion, that is not required for DNA binding. In comparison with Escherichia coli SSB, the tail may play a role in protein–protein interactions during DNA replication and repair.
Resumo:
Transcription factors control eukaryotic polymerase II function by influencing the recruitment of multiprotein complexes to promoters and their subsequent integrated function. The complexity of the functional ‘transcriptosome’ has necessitated biochemical fractionation and subsequent protein sequencing on a grand scale to identify individual components. As a consequence, much is now known of the basal transcription complex. In contrast, less is known about the complexes formed at distal promoter elements. The c-fos SRE, for example, is known to bind Serum Response Factor (SRF) and ternary complex factors such as Elk-1. Their interaction with other factors at the SRE is implied but, to date, none have been identified. Here we describe the use of mass-spectrometric sequencing to identify six proteins, SRF, Elk-1 and four novel proteins, captured on SRE duplexes linked to magnetic beads. This approach is generally applicable to the characterisation of nucleic acid-bound protein complexes and the post-translational modification of their components.
Resumo:
Deletion of the yeast gene ACB1 encoding Acb1p, the yeast homologue of the acyl-CoA-binding protein (ACBP), resulted in a slower growing phenotype that adapted into a faster growing phenotype with a frequency >1:105. A conditional knockout strain (Y700pGAL1-ACB1) with the ACB1 gene under control of the GAL1 promoter exhibited an altered acyl-CoA profile with a threefold increase in the relative content of C18:0-CoA, without affecting total acyl-CoA level as previously reported for an adapted acb1Δ strain. Depletion of Acb1p did not affect the general phospholipid pattern, the rate of phospholipid synthesis, or the turnover of individual phospholipid classes, indicating that Acb1p is not required for general glycerolipid synthesis. In contrast, cells depleted for Acb1p showed a dramatically reduced content of C26:0 in total fatty acids and the sphingolipid synthesis was reduced by 50–70%. The reduced incorporation of [3H]myo-inositol into sphingolipids was due to a reduced incorporation into inositol-phosphoceramide and mannose-inositol-phosphoceramide only, a pattern that is characteristic for cells with aberrant endoplasmic reticulum to Golgi transport. The plasma membrane of the Acb1p-depleted strain contained increased levels of inositol-phosphoceramide and mannose-inositol-phosphoceramide and lysophospholipids. Acb1p-depleted cells accumulated 50- to 60-nm vesicles and autophagocytotic like bodies and showed strongly perturbed plasma membrane structures. The present results strongly suggest that Acb1p plays an important role in fatty acid elongation and membrane assembly and organization.