54 resultados para c-erbB-2 expression


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine the mechanism of action responsible for the in vivo antitumor activity of a phosphorothioate antisense inhibitor targeted against human C-raf kinase (ISIS 5132, also known as CGP69846A), a series of mismatched phosphorothioate analogs of ISIS 5132 or CGP69846A were synthesized and characterized with respect to hybridization affinity, inhibitory effects on C-raf gene expression in vitro, and antitumor activity in vivo. Incorporation of a single mismatch into the sequence of ISIS 5132 or CGP69846A resulted in reduced hybridization affinity toward C-raf RNA sequences and reduced inhibitory activity against C-raf expression in vitro and tumor growth in vivo. Moreover, incorporation of additional mismatches resulted in further loss of in vitro and in vivo activity in a manner that correlated well with a hybridization-based (i.e., antisense) mechanism of action. These results provide important experimental evidence supporting an antisense mechanism of action underlying the in vivo antitumor activity displayed by ISIS 5132 or CGP69846A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene regulation by imposed localization was studied by using designed zinc finger proteins that bind 18-bp DNA sequences in the 5′ untranslated regions of the protooncogenes erbB-2 and erbB-3. Transcription factors were generated by fusion of the DNA-binding proteins to repression or activation domains. When introduced into cells these transcription factors acted as dominant repressors or activators of, respectively, endogenous erbB-2 or erbB-3 gene expression. Significantly, imposed regulation of the two genes was highly specific, despite the fact that the transcription factor binding sites targeted in erbB-2 and erbB-3 share 15 of 18 nucleotides. Regulation of erbB-2 gene expression was observed in cells derived from several species that conserve the DNA target sequence. Repression of erbB-2 in SKBR3 breast cancer cells inhibited cell-cycle progression by inducing a G1 accumulation, suggesting the potential of designed transcription factors for cancer gene therapy. These results demonstrate the willful up- and down-regulation of endogenous genes, and provide an additional means to alter biological systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LXRα is a member of a nuclear receptor superfamily that regulates transcription. LXRα forms a heterodimer with RXRα, another member of this family, to regulate the expression of cholesterol 7α-hydroxylase by means of binding to the DR4-type cis-element. Here, we describe a function for LXRα as a cAMP-responsive regulator of renin and c-myc gene transcriptions by the interaction with a specific cis-acting DNA element, CNRE (an overlapping cAMP response element and a negative response element). Our previous studies showed that renin gene expression is regulated by cAMP, at least partly, through the CNRE sequence in its 5′-flanking region. This sequence is also found in c-myc and several other genes. Based on our cloning results using the yeast one-hybrid system, we discovered that the mouse homologue of human LXRα binds to the CNRE and demonstrated that it binds as a monomer. To define the function of LXRα on gene expression, we transfected the renin-producing renal As4.1 cells with LXRα expression plasmid. Overexpression of LXRα in As4.1 cells confers cAMP inducibility to reporter constructs containing the renin CNRE. After stable transfection of LXRα, As4.1 cells show a cAMP-inducible up-regulation of renin mRNA expression. In parallel experiments, we demonstrated that LXRα can also bind to the homologous CNRE in the c-myc promoter. cAMP promotes transcription through c-myc/CNRE:LXRα interaction in LXRα transiently transfected cells and increases c-myc mRNA expression in stably transfected cells. Identification of LXRα as a cAMP-responsive nuclear modulator of renin and c-myc expression not only has cardiovascular significance but may have generalized implication in the regulation of gene transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aldehyde dehydrogenase class 3 (ALDH3) constitutes 20–40% of the total water-soluble proteins in the mammalian cornea. Here, we show by Northern blot analysis that ALDH3 expression in the mouse is at least 500-fold higher in the cornea than in any other tissue examined, with very low levels of expression detected in the stomach, urinary bladder, ocular lens, and lung. Histochemical localization reveals that this exceptional level of expression in the mouse cornea occurs in the anterior epithelial cells and that little ALDH3 is present in the keratocytes or corneal endothelial cells. A 13-kbp mouse ALDH3 promoter fragment containing >12 kbp of the 5′ flanking sequence, the 40-bp untranslated first exon, and 29 bp of intron 1 directed cat reporter gene expression to tissues that express the endogenous ALDH3 gene, except that transgene promoter activity was higher in the stomach and bladder than in the cornea. By contrast, when driven by a 4.4-kbp mouse ALDH3 promoter fragment [1,050-bp 5′ flanking region, exon 1, intron 1 (3.4 kbp), and 7 bp of exon 2] expression of the cat reporter gene was confined to the corneal epithelial cells, except for very low levels in the liver, effectively reproducing the corneal expression pattern of the endogenous ALDH3 gene. These results indicate that tissue-specific expression of ALDH3 is determined by positive and negative elements in the 5′ flanking region of the gene and suggests putative silencers located in intron 1. We demonstrate regulatory sequences capable of directing cornea-specific gene expression, affording the opportunity for genetic engineering in this transparent tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclooxygenase-2 (COX-2) is an inducible form of COX and is overexpressed in diverse tumors, raising the possibility of a role for COX-2 in carcinogenesis. In addition, COX-2 contributes to angiogenesis. The Epstein–Barr virus (EBV) oncoprotein, latent membrane protein 1 (LMP1), is detected in at least 70% of nasopharyngeal carcinoma (NPC) and all EBV-infected preinvasive nasopharyngeal lesions. We found that in specimens of LMP1-positive NPC, COX-2 is frequently expressed, whereas LMP1-negative NPC rarely express the enzyme. We next found that expression of LMP1 in EBV-negative nasopharyngeal epithelial cells induced COX-2 expression. Coexpression of IκBα(S32A/S36A), which is not phosphorylated and prevents NF-κB activation, with LMP1 showed that NF-κB is essential for induction of COX-2 by LMP1. We also demonstrate that NF-κB is involved in LMP1-induced cox-2 promoter activity with the use of reporter assays. Two major regions of LMP1, designated CTAR1 and CTAR2, are signal-transducing domains of LMP1. Constructs expressing either CTAR1 or CTAR2 induce COX-2 but to a lesser extent than wild-type LMP1, consistent with the ability of both regions to activate NF-κB. Furthermore, we demonstrate that LMP1-induced COX-2 is functional because LMP1 increased production of prostaglandin E2 in a COX-2-dependent manner. Finally, we demonstrate that LMP1 increased production of vascular endothelial growth factor (VEGF). Treatment of LMP1-expressing cells with the COX-2-specific inhibitor (NS-398) dramatically decreased production of VEGF, suggesting that LMP1-induced VEGF production is mediated, at least in part, by COX-2. These results suggest that COX-2 induction by LMP1 may play a role in angiogenesis in NPC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In prostanoid biosynthesis, the first two steps are catalyzed by cyclooxygenases (COX). In mice and humans, deregulated expression of COX-2, but not of COX-1, is characteristic of epithelial tumors, including squamous cell carcinomas of skin. To explore the function of COX-2 in epidermis, a keratin 5 promoter was used to direct COX-2 expression to the basal cells of interfollicular epidermis and the pilosebaceous appendage of transgenic mouse skin. COX-2 overexpression in the expected locations, resulting in increased prostaglandin levels in epidermis and plasma, correlated with a pronounced skin phenotype. Heterozygous transgenic mice exhibited a reduced hair follicle density. Moreover, postnatally hair follicle morphogenesis and thinning of interfollicular dorsal epidermis were delayed. Adult transgenics showed a body-site-dependent sparse coat of greasy hair, the latter caused by sebaceous gland hyperplasia and increased epicutaneous sebum levels. In tail skin, hyperplasia of scale epidermis reflecting an increased number of viable and cornified cell layers was observed. Hyperplasia was a result of a disturbed program of epidermal differentiation rather than an increased proliferation rate, as reflected by the strong suppression of keratin 10, involucrin, and loricrin expression in suprabasal cells. Further pathological signs were loss of cell polarity, mainly of basal keratinocytes, epidermal invaginations into the dermis, and formation of horn perls. Invaginating hyperplastic lobes were surrounded by CD31-positive vessels. These results demonstrate a causal relationship between transgenic COX-2 expression in basal keratinocytes and epidermal hyperplasia as well as dysplastic features at discrete body sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work illustrates potential adverse effects linked with the expression of proteinase inhibitor (PI) in plants used as a strategy to enhance pest resistance. Tobacco (Nicotiana tabacum L. cv Xanthi) and Arabidopsis [Heynh.] ecotype Wassilewskija) transgenic plants expressing the mustard trypsin PI 2 (MTI-2) at different levels were obtained. First-instar larvae of the Egyptian cotton worm (Spodoptera littoralis Boisd.) were fed on detached leaves of these plants. The high level of MTI-2 expression in leaves had deleterious effects on larvae, causing mortality and decreasing mean larval weight, and was correlated with a decrease in the leaf surface eaten. However, larvae fed leaves from plants expressing MTI-2 at the low expression level did not show increased mortality, but a net gain in weight and a faster development compared with control larvae. The low MTI-2 expression level also resulted in increased leaf damage. These observations are correlated with the differential expression of digestive proteinases in the larval gut; overexpression of existing proteinases on low-MTI-2-expression level plants and induction of new proteinases on high-MTI-2-expression level plants. These results emphasize the critical need for the development of a PI-based defense strategy for plants obtaining the appropriate PI-expression level relative to the pest's sensitivity threshold to that PI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of 21 C3 and C4 monocot and dicot species to rapidly export newly fixed C in the light at both ambient and enriched CO2 levels was compared. Photosynthesis and concurrent export rates were estimated during isotopic equilibrium of the transport sugars using a steady-state 14CO2-labeling procedure. At ambient CO2 photosynthesis and export rates for C3 species were 5 to 15 and 1 to 10 μmol C m−2 s−1, respectively, and 20 to 30 and 15 to 22 μmol C m−2 s−1, respectively, for C4 species. A linear regression plot of export on photosynthesis rate of all species had a correlation coefficient of 0.87. When concurrent export was expressed as a percentage of photosynthesis, several C3 dicots that produced transport sugars other than Suc had high efflux rates relative to photosynthesis, comparable to those of C4 species. At high CO2 photosynthetic and export rates were only slightly altered in C4 species, and photosynthesis increased but export rates did not in all C3 species. The C3 species that had high efflux rates relative to photosynthesis at ambient CO2 exported at rates comparable to those of C4 species on both an absolute basis and as a percentage of photosynthesis. At ambient CO2 there were strong linear relationships between photosynthesis, sugar synthesis, and concurrent export. However, at high CO2 the relationships between photosynthesis and export rate and between sugar synthesis and export rate were not as strong because sugars and starch were accumulated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduced (FeII) Rhodopseudomonas palustris cytochrome c′ (Cyt c′) is more stable toward unfolding ([GuHCl]1/2 = 2.9(1) M) than the oxidized (FeIII) protein ([GuHCl]1/2 = 1.9(1) M). The difference in folding free energies (ΔΔGf° = 70 meV) is less than half of the difference in reduction potentials of the folded protein (100 mV vs. NHE) and a free heme in aqueous solution (≈−150 mV). The spectroscopic features of unfolded FeII–Cyt c′ indicate a low-spin heme that is axially coordinated to methionine sulfur (Met-15 or Met-25). Time-resolved absorption measurements after CO photodissociation from unfolded FeII(CO)–Cyt c′ confirm that methionine can bind to the ferroheme on the microsecond time scale [kobs = 5(2) × 104 s−1]. Protein folding was initiated by photoreduction (two-photon laser excitation of NADH) of unfolded FeIII–Cyt c′ ([GuHCl] = 2.02–2.54 M). Folding kinetics monitored by heme absorption span a wide time range and are highly heterogeneous; there are fast-folding (≈103 s−1), intermediate-folding (102–101 s−1), and slow-folding (10−1 s−1) populations, with the last two likely containing methionine-ligated (Met-15 or Met-25) ferrohemes. Kinetics after photoreduction of unfolded FeIII–Cyt c′ in the presence of CO are attributable to CO binding [1.4(6) × 103 s−1] and FeII(CO)–Cyt c′ folding [2.8(9) s−1] processes; stopped-flow triggered folding of FeIII–Cyt c′ (which does not contain a protein-derived sixth ligand) is adequately described by a single kinetics phase with an estimated folding time constant of ≈4 ms [ΔGf° = −33(3) kJ mol−1] at zero denaturant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have compared the molecular architecture and function of the myeloperoxidase upstream enhancer in multipotential versus granulocyte-committed hematopoietic progenitor cells. We show that the enhancer is accessible in multipotential cell chromatin but functionally incompetent before granulocyte commitment. Multipotential cells contain both Pu1 and C-EBP alpha as enhancer-binding activities. Pu1 is unphosphorylated in both multipotential and granulocyte-committed cells but is phosphorylated in B lymphocytes, raising the possibility that differential phosphorylation may play a role in specifying its lymphoid versus myeloid functions. C-EBP alpha exists as multiple phosphorylated forms in the nucleus of both multipotential and granulocyte-committed cells. C-EBP beta is unphosphorylated and cytoplasmically localized in multipotential cells but exists as a phosphorylated nuclear enhancer-binding activity in granulocyte-committed cells. Granulocyte colony-stimulating factor-induced granulocytic differentiation of multipotential progenitor cells results in activation of C-EBP delta expression and functional recruitment of C-EBP delta and C-EBP beta to the nucleus. Our results implicate Pu1 and the C-EBP family as critical regulators of myeloperoxidase gene expression and are consistent with a model in which a temporal exchange of C-EBP isoforms at the myeloperoxidase enhancer mediates the transition from a primed state in multipotential cells to a transcriptionally active configuration in promyelocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NK1.1+ T [natural killer (NK) T] cells express an invariant T cell antigen receptor alpha chain (TCR alpha) encoded by V alpha 14 and J alpha 281 segments in association with a limited number of V betas, predominantly V beta 8.2. Expression of the invariant V alpha 14/J alpha 281, but not V alpha 1, TCR in transgenic mice lacking endogenous TCR alpha expression blocks the development of conventional T alpha beta cells and leads to the preferential development of V alpha 14 NK T cells, suggesting a prerequisite role of invariant V alpha 14 TCR in NK T cell development. In V beta 8.2 but not B beta 3 transgenic mice, two NK T cells with different CD3 epsilon expressions, CD3 epsilon(dim) and CD3 epsilon(high), can be identified. CD3 epsilon(high) NK T cells express surface V alpha 14/V beta 8 TCR, indicating a mature cell type, whereas CD3 epsilon(dim) NK T cells express V beta 8 without V alpha 14 TCR and no significant CD3 epsilon expression (CD3 epsilon(dim)) on the cell surface. However, the latter are positive for recombination activating gene (RAG-1 and RAG-2) mRNA, which are only expressed in the precursor or immature T cell lineage, and also possess CD3 epsilon mRNA in their cytoplasm, suggesting that CD3 epsilon(dim) NK T cells are the precursor of V alpha 14 NK T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The initiation and morphogenesis of cutaneous appendages depend on a series of reciprocal signaling events between the epithelium and mesenchyme of the embryonic skin. In the development of feather germs, early dermal signals induce the formation of epidermal placodes that in turn signal the mesoderm to form dermal condensations immediately beneath them. We find a spatially and temporally restricted pattern of transcription for the genes that encode fibroblast growth factor (FGF) 2 and FGF receptor (FGFR) 1 in developing feather germs of the chicken embryo. FGF-2 expression is restricted to the epidermal placodes, whereas FGFR-1 expression is limited to the dermal condensations. Transcription of these genes could not be detected in skins of scaleless (sc/sc) embryos that fail to develop feathers as a result of an ectodermal defect. Treatment of sc/sc skins with FGF-2 results in the formation of feathers at the site of application of the growth factor and the induced feathers express FGFR-1 in their dermal condensations. Thus, we have established FGF-2 as an epidermal signal in early feather germ formation. The observation that FGF-2 can rescue the mutant phenotype of sc/sc embryos suggests that FGF-2 either is, or is downstream from, the signal that the sc/sc mutant ectoderm fails to generate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interleukin 2 (IL-2) gene is subject to two types of regulation: its expression is T-lymphocyte-specific and it is acutely dependent on specific activation signals. The IL-2 transcriptional apparatus integrates multiple types of biochemical information in determining whether or not the gene will be expressed, using multiple diverse transcription factors that are each optimally activated or inhibited by different signaling pathways. When activation of one or two of these factors is blocked IL-2 expression is completely inhibited. The inability of the other, unaffected factors to work is explained by the striking finding that none of the factors interacts stably with its target site in the IL-2 enhancer unless all the factors are present. Coordinate occupancy of all the sites in the minimal enhancer is apparently maintained by continuous assembly and disassembly cycles that respond to the instantaneous levels of each factor in the nuclear compartment. In addition, the minimal enhancer undergoes specific increases in DNase I accessibility, consistent with dramatic changes in chromatin structure upon activation. Still to be resolved is what interaction(s) conveys T-lineage specificity. In the absence of activating signals, the minimal IL-2 enhancer region in mature T cells is apparently unoccupied, exactly as in non-T lineage cells. However, in a conserved but poorly studied upstream region, we have now mapped several novel sites of DNase I hypersensitivity in vivo that constitutively distinguish IL-2 producer type T cells from cell types that cannot express IL-2. Thus a distinct domain of the IL-2 regulatory sequence may contain sites for competence- or lineage-marking protein contacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BCL-2-deficient T cells demonstrate accelerated cell cycle progression and increased apoptosis following activation. Increasing the levels of BCL-2 retarded the G0-->S transition, sustained the levels of cyclin-dependent kinase inhibitor p27Kip1, and repressed postactivation death. Proximal signal transduction events and immediate early gene transcription were unaffected. However, the transcription and synthesis of interleukin 2 and other delayed early cytokines were markedly attenuated by BCL-2. In contrast, a cysteine protease inhibitor that also blocks apoptosis had no substantial affect upon cytokine production. InterleUkin 2 expression requires several transcription factors of which nuclear translocation of NFAT (nuclear factor of activated T cells) and NFAT-mediated transactivation were impaired by BCL-2. Thus, select genetic aberrations in the apoptotic pathway reveal a cell autonomous coregulation of activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self renewal of normal erythroid progenitors is induced by the receptor tyrosine kinase c-ErbB, whereas other receptors (c-Kit/Epo-R) regulate erythroid differentiation. To address possible mechanisms that could explain this selective activity of c-ErbB, we analyzed the ability of these receptors to activate the different members of the Stat transcription factor family. Ligand activation of c-ErbB induced the tyrosine phosphorylation, DNA-binding, and reporter gene transcription of Stat 5b in erythroblasts. In contrast, ligand activation of c-Kit was unable to induce any of these effects in the same cells. Activation of the erythropoietin receptor caused specific DNA-binding of Stat 5b, but failed to induce reporter gene transcription. These biochemical findings correlate perfectly with the selective ability of c-ErbB to cause sustained self renewal in erythroid progenitors.