40 resultados para anti-cyclic citrullinated peptide antibodies
Resumo:
Glycoprotein D (gD) of herpes simplex virus 1 (HSV-1) is required for stable attachment and penetration of the virus into susceptible cells after initial binding. We derived anti-idiotypic antibodies to the neutralizing monoclonal antibody HD1 to gD of HSV-1. These antibodies have the properties expected of antibodies against a gD receptor. Specifically, they bind to the surface of HEp-2, Vero, and HeLa cells susceptible to HSV infection and specifically react with a Mr 62,000 protein in these and other (143TK- and BHK) cell lines. They neutralize virion infectivity, drastically decrease plaque formation by impairing cell-to-cell spread of virions, and reduce polykaryocytosis induced by strain HFEM, which carries a syncytial (syn-) mutation. They do not affect HSV growth in a single-step cycle and plaque formation by an unrelated virus, indicating that they specifically affect the interaction of HSV gD) with a cell surface receptor. We conclude that the Mr 62,000 cell surface protein interacts with gD to enable spread of HSV-1 from cell to cell and virus-induced polykaryocytosis.
Resumo:
The structure of the small hepatitis B virus surface antigen (HBsAg) was investigated by epitope mapping of four anti-HBsAg monoclonal antibodies (mAbs). Amino acid sequences of epitopes were derived from affinity-enrichment experiments (biopanning) using a filamentous phage peptide library. The library consists of 10(9) different clones bearing a 30-residue peptide fused to gene III. Sequence homologies between peptides obtained from panning the library against the antibodies and the native HBsAg sequence allowed for precise description of the binding regions. Three of four mAbs were found to bind to distinct discontinuous epitopes between amino acid residues 101 and 207 of HBsAg. The fourth mAb was demonstrated to bind to residues 121-124. The sequence data are supported by ELISA assays demonstrating the binding of the HBsAg-specific peptides on filamentous phage to mAbs. The sequence data were used to map the surface of HBsAg and to derive a topological model for the alpha-carbon trace of the 101-207 region of HBsAg. The approach should be useful for other proteins for which the crystal structure is not available but a representative set of mAbs can be obtained.
Resumo:
The beta-amyloid peptide, the hallmark of Alzheimer disease, forms fibrillar toxic aggregates in brain tissue that can be dissolved only by strong denaturing agents. To study beta-amyloid formation and its inhibition, we prepared immune complexes with two monoclonal antibodies (mAbs), AMY-33 and 6F/3D, raised against beta-amyloid fragments spanning amino acid residues 1-28 and 8-17 of the beta-amyloid peptide chain, respectively. In vitro aggregation of beta-amyloid peptide was induced by incubation for 3 h at 37 degrees C and monitored by ELISA, negative staining electron microscopy, and fluorimetric studies. We found that the mAs prevent the aggregation of beta-amyloid peptide and that the inhibitory effect appears to be related to the localization of the antibody-binding sites and the nature of the aggregating agents. Preparation of mAbs against "aggregating epitopes," defined as sequences related to the sites where protein aggregation is initiated, may lead to the understanding and prevention of protein aggregation. The results of this study may provide a foundation for using mAbs in vivo to prevent the beta-amyloid peptide aggregation that is associated with Alzheimer disease.
Resumo:
Transgenic Caenorhabditis elegans nematodes have been engineered to express potentially amyloidic human proteins. These animals contain constructs in which the muscle-specific unc-54 promoter/enhancer of C. elegans drives the expression of the appropriate coding regions derived from human cDNA clones. Animals containing constructs expressing the 42-amino acid beta-amyloid peptide (derived from human amyloid precursor protein cDNA) produce muscle-specific deposits immunoreactive with anti-beta-amyloid polyclonal and monoclonal antibodies. A subset of these deposits also bind the amyloid-specific dye thioflavin S, indicating that these deposits have the tinctural characteristics of classic amyloid. Co-expression of beta-peptide and transthyretin, a protein implicated in preventing the formation of insoluble beta-amyloid, leads to a dramatic reduction in the number of dye-reactive deposits. These results suggest that this invertebrate model may be useful for in vivo investigation of factors that modulate amyloid formation.
Resumo:
The Huntington disease (HD) phenotype is associated with expansion of a trinucleotide repeat in the IT15 gene, which is predicted to encode a 348-kDa protein named huntington. We used polyclonal and monoclonal anti-fusion protein antibodies to identify native huntingtin in rat, monkey, and human. Western blots revealed a protein with the expected molecular weight which is present in the soluble fraction of rat and monkey brain tissues and lymphoblastoid cells from control cases. In lymphoblastoid cell lines from juvenile-onset heterozygote HD cases, both normal and mutant huntingtin are expressed, and increasing repeat expansion leads to lower levels of the mutant protein. Immunocytochemistry indicates that huntingtin is located in neurons throughout the brain, with the highest levels evident in larger neurons. In the human striatum, huntingtin is enriched in a patch-like distribution, potentially corresponding to the first areas affected in HD. Subcellular localization of huntingtin is consistent with a cytosolic protein primarily found in somatodendritic regions. Huntingtin appears to particularly associate with microtubules, although some is also associated with synaptic vesicles. On the basis of the localization of huntingtin in association with microtubules, we speculate that the mutation impairs the cytoskeletal anchoring or transport of mitochondria, vesicles, or other organelles or molecules.
Resumo:
We describe a method to facilitate radioimaging with technetium-99m (99mTc) by genetic incorporation of a 99mTc chelation site in recombinant single-chain Fv (sFv) antibody proteins. This method relies on fusion of the sFv C terminus with a Gly4Cys peptide that specifically coordinates 99mTc. By using analogues of the 26-10 anti-digoxin sFv as our primary model, we find that addition of the chelate peptide, to form 26-10-1 sFv', does not alter the antigen-binding affinity of sFv. We have demonstrated nearly quantitative chelation of 0.5-50 mCi of 99mTc per mg of 26-10-1 sFv' (1 Ci = 37 GBq). These 99mTc-labeled sFv' complexes are highly stable to challenge with saline buffers, plasma, or diethylenetriaminepentaacetic acid. We find that the 99mTc-labeled 741F8-1 sFv', specific for the c-erbB-2 tumor-associated antigen, is effective in imaging human ovarian carcinoma in a scid mouse tumor xenograft model. This fusion chelate methodology should be applicable to diagnostic imaging with 99mTc and radioimmunotherapy with 186Re or 188Re, and its use could extend beyond the sFv' to other engineered antibodies, recombinant proteins, and synthetic peptides.
Resumo:
Fusion phage libraries expressing single-chain Fv antibodies were constructed from the peripheral blood lymphocytes of two melanoma patients who had been immunized with autologous melanoma cells transduced the gamma-interferon gene to enhance immunogenicity, in a trial conducted at another institution. Anti-melanoma antibodies were selected from each library by panning the phage against live cultures of the autologous tumor. After two or three rounds of panning, clones of the phage were tested by ELISA for binding to the autologous tumor cells; > 90% of the clones tested showed a strong ELISA reaction, demonstrating the effectiveness of the panning procedure for selecting antimelanoma antibodies. The panned phage population was extensively absorbed against normal melanocytes to enrich for antibodies that react with melanoma cells but not with melanocytes. The unabsorbed phage were cloned, and the specificities of the expressed antibodies were individually tested by ELISA with a panel of cultured human cells. The first tests were done with normal endothelial and fibroblast cells to identify antibodies that do not react, or react weakly, with two normal cell types, indicating some degree of specificity for melanoma cells. The proportion of phage clones expressing such antibodies was approximately 1%. Those phage were further tested by ELISA with melanocytes, several melanoma lines, and eight other tumor lines, including a glioma line derived from glial cells that share a common lineage with melanocytes. The ELISA tests identified three classes of anti-melanoma antibodies, as follows: (i) a melanoma-specific class that reacts almost exclusively with the melanoma lines; (ii) a tumor-specific class that reacts with melanoma and other tumor lines but does not react with the normal melanocyte, endothelial and fibroblast cells; and (iii) a lineage-specific class that reacts with the melanoma lines, melanocytes, and the glioma line but does not react with the other lines. These are rare classes from the immunized patients' repertoires of anti-melanoma antibodies, most of which are relatively nonspecific anti-self antibodies. The melanoma-specific class was isolated from one patient, and the lineage-specific class was isolated from the other patient, indicating that different patients can have markedly different responses to the same immunization protocol. The procedures described here can be used to screen the antibody repertoire of any person with cancer, providing access to an enormous untapped pool of human monoclonal anti-tumor antibodies with clinical and research potential.
Resumo:
Vascular cell adhesion molecule 1 (VCAM-1) represents a structurally and functionally distinct class of immunoglobulin superfamily molecules that bind leukocyte integrins and are involved in inflammatory and immune functions. X-ray crystallography defines the three-dimensional structure of the N-terminal two-domain fragment that participates in ligand binding. Residues in domain 1 important for ligand binding reside in the C-D loop, which projects markedly from one face of the molecule near the contact between domains 1 and 2. A cyclic peptide that mimics this loop inhibits binding of alpha 4 beta 1 integrin-bearing cells to VCAM-1. These data demonstrate how crystallographic structural information can be used to design a small molecule inhibitor of biological function.
Resumo:
The experimental manipulation of peptide growth hormones and their cellular receptors is central to understanding the pathways governing cellular signaling and growth control. Previous work has shown that intracellular antibodies targeted to the endoplasmic reticulum (ER) can be used to capture specific proteins as they enter the ER, preventing their transport to the cell surface. Here we have used this technology to inhibit the cell surface expression of the alpha subunit of the high-affinity interleukin 2 receptor (IL-2R alpha). A single-chain variable-region fragment of the anti-Tac monoclonal antibody was constructed with a signal peptide and a C-terminal ER retention signal. Intracellular expression of the single-chain antibody was found to completely abrogate cell surface expression of IL-2R alpha in stimulated Jurkat T cells. IL-2R alpha was detectable within the Jurkat cells as an immature 40-kDa form that was sensitive to endoglycosidase H, consistent with its retention in a pre- or early Golgi compartment. A single-chain antibody lacking the ER retention signal was also able to inhibit cell surface expression of IL-2R alpha although the mechanism appeared to involve rapid degradation of the receptor chain within the ER. These intracellular antibodies will provide a valuable tool for examining the role of IL-2R alpha in T-cell activation, IL-2 signal transduction, and the deregulated growth of leukemic cells which overexpress IL-2R alpha.
Resumo:
The influence of a synthetic retroviral peptide, CKS-17, on T helper type 1 (Th1)- or Th2-related cytokines was investigated in human blood mononuclear cells. Cells were stimulated with staphylococcal enterotoxin A, anti-CD3 plus anti-CD28 monoclonal antibodies, or lipopolysaccharide to induce cytokine mRNA. mRNA was detected by a reverse transcription-polymerase chain reaction or Northern blot analysis. CKS-17 down-regulated stimulant-induced mRNA accumulation for interferon gamma (IFN-gamma), interleukin (IL)-2, and p40 heavy and p35 light chains of IL-12, a cytokine that mediates development of Th1 response. CKS-17 up-regulated stimulant-induced mRNA accumulation of IL-10 and did not suppress Th2-related cytokine (IL-4, IL-5, IL-6, or IL-13) mRNA expression. A reverse sequence of CKS-17 peptide, used as a control, showed no such action. Anti-human IL-10 monoclonal antibody blocked ability of CKS-17 to inhibit mRNA accumulation for IFN-gamma but not the CKS-17 suppressive activity of IL-12 p40 heavy chain mRNA. Thus, CKS-17-mediated suppression of IFN-gamma mRNA expression is dependent upon augmentation of IL-10 production by CKS-17. This conserved component of several retroviral envelope proteins, CKS-17, may act as an immunomodulatory epitope responsible for cytokine dysregulation that leads to suppression of cellular immunity.