85 resultados para adenosine triphosphate sensitive potassium channel
Resumo:
ATP-sensitive potassium (“KATP”) channels are rapidly inhibited by intracellular ATP. This inhibition plays a crucial role in the coupling of electrical activity to energy metabolism in a variety of cells. The KATP channel is formed from four each of a sulfonylurea receptor (SUR) regulatory subunit and an inwardly rectifying potassium (Kir6.2) pore-forming subunit. We used systematic chimeric and point mutagenesis, combined with patch-clamp recording, to investigate the molecular basis of ATP-dependent inhibition gating of mouse pancreatic β cell KATP channels expressed in Xenopus oocytes. We identified distinct functional domains of the presumed cytoplasmic C-terminal segment of the Kir6.2 subunit that play an important role in this inhibition. Our results suggest that one domain is associated with inhibitory ATP binding and another with gate closure.
Resumo:
The gene for hSK4, a novel human small conductance calcium-activated potassium channel, or SK channel, has been identified and expressed in Chinese hamster ovary cells. In physiological saline hSK4 generates a conductance of approximately 12 pS, a value in close agreement with that of other cloned SK channels. Like other members of this family, the polypeptide encoded by hSK4 contains a previously unnoted leucine zipper-like domain in its C terminus of unknown function. hSK4 appears unique, however, in its very high affinity for Ca2+ (EC50 of 95 nM) and its predominant expression in nonexcitable tissues of adult animals. Together with the relatively low homology of hSK4 to other SK channel polypeptides (approximately 40% identical), these data suggest that hSK4 belongs to a novel subfamily of SK channels.
Resumo:
The epithelial amiloride-sensitive sodium channel (ENaC) controls transepithelial Na+ movement in Na+-transporting epithelia and is associated with Liddle syndrome, an autosomal dominant form of salt-sensitive hypertension. Detailed analysis of ENaC channel properties and the functional consequences of mutations causing Liddle syndrome has been, so far, limited by lack of a method allowing specific and quantitative detection of cell-surface-expressed ENaC. We have developed a quantitative assay based on the binding of 125I-labeled M2 anti-FLAG monoclonal antibody (M2Ab*) directed against a FLAG reporter epitope introduced in the extracellular loop of each of the α, β, and γ ENaC subunits. Insertion of the FLAG epitope into ENaC sequences did not change its functional and pharmacological properties. The binding specificity and affinity (Kd = 3 nM) allowed us to correlate in individual Xenopus oocytes the macroscopic amiloride-sensitive sodium current (INa) with the number of ENaC wild-type and mutant subunits expressed at the cell surface. These experiments demonstrate that: (i) only heteromultimeric channels made of α, β, and γ ENaC subunits are maximally and efficiently expressed at the cell surface; (ii) the overall ENaC open probability is one order of magnitude lower than previously observed in single-channel recordings; (iii) the mutation causing Liddle syndrome (β R564stop) enhances channel activity by two mechanisms, i.e., by increasing ENaC cell surface expression and by changing channel open probability. This quantitative approach provides new insights on the molecular mechanisms underlying one form of salt-sensitive hypertension.
Resumo:
Liddle syndrome is a mendelian form of hypertension characterized by constitutively elevated renal Na reabsorption that can result from activating mutations in the beta or gamma subunit of the epithelial Na channel. All reported mutations have deleted the last 45-76 normal amino acids from the cytoplasmic C terminus of one of these channel subunits. While these findings implicate these terminal segments in the normal negative regulation of channel activity, they do not identify the amino acid residues that are critical targets for these mutations. Potential targets include the short highly conserved Pro-rich segments present in the C terminus of beta and gamma subunits; these segments are similar to SH3-binding domains that mediate protein-protein interaction. We now report a kindred with Liddle syndrome in which affected patients have a mutation in codon 616 of the beta subunit resulting in substitution of a Leu for one of these highly conserved Pro residues. The functional significance of this mutation is demonstrated both by the finding that this is a de novo mutation appearing concordantly with the appearance of Liddle syndrome in the kindred and also by the marked activation of amiloride-sensitive Na channel activity seen in Xenopus oocytes expressing channels containing this mutant subunit (8.8-fold increase compared with control oocytes expressing normal channel subunits; P = 0.003). These findings demonstrate a de novo missense mutation causing Liddle syndrome and identify a critical channel residue important for the normal regulation of Na reabsorption in humans.
Resumo:
The ATP-sensitive K+-channel (KATP channel) plays a key role in insulin secretion from pancreatic β cells. It is closed both by glucose metabolism and the sulfonylurea drugs that are used in the treatment of noninsulin-dependent diabetes mellitus, thereby initiating a membrane depolarization that activates voltage-dependent Ca2+ entry and insulin release. The β cell KATP channel is a complex of two proteins: Kir6.2 and SUR1. The former is an ATP-sensitive K+-selective pore, whereas SUR1 is a channel regulator that endows Kir6.2 with sensitivity to sulfonylureas. A number of drugs containing an imidazoline moiety, such as phentolamine, also act as potent stimulators of insulin secretion, but their mechanism of action is unknown. We have used a truncated form of Kir6.2, which expresses independently of SUR1, to show that phentolamine does not inhibit KATP channels by interacting with SUR1. Instead, our results argue that phentolamine may interact directly with Kir6.2 to produce a voltage-independent reduction in channel activity. The single-channel conductance is unaffected. Although the ATP molecule also contains an imidazoline group, the site at which phentolamine blocks is not identical to the ATP-inhibitory site, because phentolamine block of an ATP-insensitive mutant (K185Q) is normal. KATP channels also are found in the heart where they are involved in the response to cardiac ischemia: they also are blocked by phentolamine. Our results suggest that this may be because Kir6.2, which is expressed in the heart, forms the pore of the cardiac KATP channel.
Resumo:
In this work, we extend the study of the genes controlling the formation of domes in the rat mammary cell line LA7 under the influence of DMSO. The role of the rat8 gene has already been demonstrated. We have now studied two additional genes. The first, called 133, is the rat ortholog of the human epithelial membrane protein 3 (EMP3), a member of the peripheral myelin protein 22 (PMP22)/EMP/lens-specific membrane protein 20 (MP20) gene family that encodes for tetratransmembrane proteins; it is expressed in the LA7 line in the absence of DMSO but not in its presence. The second gene is the β subunit of the amiloride-sensitive Na+ channel. Studies with antisense oligonucleotides show that the formation of domes is under the control of all three genes: the expression of rat8 is required for both their formation and their persistence; the expression of the Na+ channel β subunit is required for their formation; and the expression of gene 133 blocks the expression of the Na+ channel genes, thus preventing formation of the domes. The formation of these structures is also accompanied by the expression of α6β1 integrin, followed by that of E-cadherin and cytokeratin 8. It appears, therefore, that dome formation requires the activity of the Na+ channel and the rat8-encoded protein and is under the negative control of gene 133. DMSO induces dome formation by blocking this control.
Resumo:
Muscarinic acetylcholine receptors are members of the G protein-coupled receptor superfamily expressed in neurons, cardiomyocytes, smooth muscle, and a variety of epithelia. Five subtypes of muscarinic acetylcholine receptors have been discovered by molecular cloning, but their pharmacological similarities and frequent colocalization make it difficult to assign functional roles for individual subtypes in specific neuronal responses. We have used gene targeting by homologous recombination in embryonic stem cells to produce mice lacking the m1 receptor. These mice show no obvious behavioral or histological defects, and the m2, m3, and m4 receptors continue to be expressed in brain with no evidence of compensatory induction. However, the robust suppression of the M-current potassium channel activity evoked by muscarinic agonists in sympathetic ganglion neurons is completely lost in m1 mutant mice. In addition, both homozygous and heterozygous mutant mice are highly resistant to the seizures produced by systemic administration of the muscarinic agonist pilocarpine. Thus, the m1 receptor subtype mediates M current modulation in sympathetic neurons and induction of seizure activity in the pilocarpine model of epilepsy.
Resumo:
The basal forebrain complex, which includes the nucleus basalis magnocellularis (NBM), provides widespread cholinergic and γ-aminobutyric acid-containing projections throughout the brain, including the insular and pyriform cortices. A number of studies have implicated the cholinergic neurons in the mediation of learning and memory processes. However, the role of basal forebrain activity in information retrieval mechanisms is less known. The aim of the present study is to evaluate the effects of reversible inactivation of the NBM by tetrodotoxin (TTX, a voltage-sensitive sodium channel blocker) during the acquisition and retrieval of conditioned taste aversion (CTA) and to measure acetylcholine (ACh) release during TTX inactivation in the insular cortex, by means of the microdialysis technique in free-moving rats. Bilateral infusion of TTX in the NBM was performed 30 min before the presentation of gustative stimuli, in either the CTA acquisition trial or retrieval trial. At the same time, levels of extracellular ACh release were measured in the insular cortex. The behavioral results showed significant impairment in CTA acquisition when the TTX was infused in the NBM, whereas retrieval was not affected when the treatment was given during the test trial. Biochemical results showed that TTX infusion into the NBM produced a marked decrease in cortical ACh release as compared with the controls during consumption of saccharin in the acquisition trial. Depleted ACh levels were found during the test trial in all groups except in the group that received TTX during acquisition. These results suggest a cholinergic-dependent process during acquisition, but not during memory retrieval, and that NBM-mediated cholinergic cortical release may play an important role in early stages of learning, but not during recall of aversive memories.
Resumo:
Members of the Src family of nonreceptor protein tyrosine kinases (PTKs) have been implicated in the regulation of cellular excitability and synaptic plasticity. We have investigated the role of these PTKs in in vitro models of epileptiform activity. Spontaneous epileptiform discharges were induced in vitro in the CA3 region of rat hippocampal slices by superfusion with the potassium channel blocker 4-aminopyridine in Mg2+-free medium. In hippocampal slices treated in this fashion, Src kinase activity was increased and the frequency of epileptiform discharges could be greatly reduced by inhibitor of the Src family of PTKs, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), but not by the inactive structural analog 4-amino-7-phenylpyrazol[3,4-d]pyrimidine (PP3). 4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine also reduced epileptiform activity induced by either 4-aminopyridine or Mg2+-free medium alone. These observations demonstrate a role for Src family PTKs in the pathophysiology of epilepsy and suggest potential therapeutic targets for antiepileptic therapy.
Resumo:
Drug-induced long QT syndrome (LQTS) is a prevalent disorder of uncertain etiology that predisposes to sudden death. KCNE2 encodes MinK-related peptide 1 (MiRP1), a subunit of the cardiac potassium channel IKr that has been associated previously with inherited LQTS. Here, we examine KCNE2 in 98 patients with drug-induced LQTS, identifying three individuals with sporadic mutations and a patient with sulfamethoxazole-associated LQTS who carried a single-nucleotide polymorphism (SNP) found in ≈1.6% of the general population. While mutant channels showed diminished potassium flux at baseline and wild-type drug sensitivity, channels with the SNP were normal at baseline but inhibited by sulfamethoxazole at therapeutic levels that did not affect wild-type channels. We conclude that allelic variants of MiRP1 contribute to a significant fraction of cases of drug-induced LQTS through multiple mechanisms and that common sequence variations that increase the risk of life-threatening drug reactions can be clinically silent before drug exposure.
Resumo:
Cardiac myocytes have been shown to express constitutively endothelial nitric oxide synthase (eNOS) (nitric oxide synthase 3), the activation of which has been implicated in the regulation of myocyte L-type voltage-sensitive calcium channel current (ICa-L) and myocyte contractile responsiveness to parasympathetic nervous system signaling, although this implication remains controversial. Therefore, we examined the effect of the muscarinic cholinergic agonist carbachol (CCh) on ICa-L and contractile amplitude in isoproterenol (ISO)-prestimulated ventricular myocytes isolated from adult mice, designated eNOSnull mice, with targeted disruption of the eNOS gene. Although both eNOSnull and wild-type (WT) ventricular myocytes exhibited similar increases in ICa-L in response to ISO, there was no measurable suppression of ICa-L by CCh in cells from eNOSnull mice, in contrast to cells from WT mice. These results were reflected in the absence of an effect of CCh on the positive inotropic effect of ISO in eNOSnull myocytes. Also, unlike myocytes from WT animals, eNOSnull myocytes failed to exhibit an increase in cGMP content in response to CCh. Nevertheless, the pharmacologic nitric oxide donors 3-morpholino-sydnonimine and S-nitroso-acetyl-cystein increased cGMP generation and suppressed ISO-augmented ICa-L in eNOSnull cells, suggesting that the signal transduction pathway(s) downstream of eNOS remained intact. Of importance, activation of the acetylcholine-activated K+ channel by CCh was unaffected in atrial and ventricular eNOSnull myocytes. These results confirm the obligatory role of eNOS in coupling muscarinic receptor activation to cGMP-dependent control of ICa-L in cardiac myocytes.
Resumo:
During the induction of long-term potentiation (LTP) in hippocampal slices adenosine triphosphate (ATP) is secreted into the synaptic cleft, and a 48 kDa/50 kDa protein duplex becomes phosphorylated by extracellular ATP. All the criteria required as evidence that these two proteins serve as principal substrates of ecto-protein kinase activity on the surface of hippocampal pyramidal neurons have been fulfilled. This phosphorylation activity was detected on the surface of pyramidal neurons assayed after synaptogenesis, but not in immature neurons nor in glial cells. Addition to the extracellular medium of a monoclonal antibody termed mAb 1.9, directed to the catalytic domain of protein kinase C (PKC), inhibited selectively this surface protein phosphorylation activity and blocked the stabilization of LTP induced by high frequency stimulation (HFS) in hippocampal slices. This antibody did not interfere with routine synaptic transmission nor prevent the initial enhancement of synaptic responses observed during the 1-5 min period immediately after the application of HFS (the induction phase of LTP). However, the initial increase in the slope of excitatory postsynaptic potentials, as well as the elevated amplitude of the population spike induced by HFS, both declined gradually and returned to prestimulus values within 30-40 min after HFS was applied in the presence of mAb 1.9. A control antibody that binds to PKC but does not inhibit its activity had no effect on LTP. The selective inhibitory effects observed with mAb 1.9 provide the first direct evidence of a causal role for ecto-PK in the maintenance of stable LTP, an event implicated in the process of learning and the formation of memory in the brain.
Resumo:
The involvement of a conserved serine (Ser196 at the mu-, Ser177 at the delta-, and Ser187 at the kappa-opioid receptor) in receptor activation is demonstrated by site-directed mutagenesis. It was initially observed during our functional screening of a mu/delta-opioid chimeric receptor, mu delta2, that classical opioid antagonists such as naloxone, naltrexone, naltriben, and H-Tyr-Tic[psi,CH2NH]Phe-Phe-OH (TIPPpsi; Tic = 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) could inhibit forskolin-stimulated adenylyl cyclase activity in CHO cells stably expressing the chimeric receptor. Antagonists also activated the G protein-coupled inward rectifying potassium channel (GIRK1) in Xenopus oocytes coexpressing the mu delta2 opioid receptor and the GIRK1 channel. By sequence analysis and back mutation, it was determined that the observed antagonist activity was due to the mutation of a conserved serine to leucine in the fourth transmembrane domain (S196L). The importance of this serine was further demonstrated by analogous mutations created in the mu-opioid receptor (MORS196L) and delta-opioid receptor (DORS177L), in which classical opioid antagonists could inhibit forskolin-stimulated adenylyl cyclase activity in CHO cells stably expressing either MORS196L or DORS177L. Again, antagonists could activate the GIRK1 channel coexpressed with either MORS196L or DORS177L in Xenopus oocytes. These data taken together suggest a crucial role for this serine residue in opioid receptor activation.
Resumo:
The crystal structure of pyruvate phosphate dikinase, a histidyl multiphosphotransfer enzyme that synthesizes adenosine triphosphate, reveals a three-domain molecule in which the phosphohistidine domain is flanked by the nucleotide and the phosphoenolpyruvate/pyruvate domains, with the two substrate binding sites approximately 45 angstroms apart. The modes of substrate binding have been deduced by analogy to D-Ala-D-Ala ligase and to pyruvate kinase. Coupling between the two remote active sites is facilitated by two conformational states of the phosphohistidine domain. While the crystal structure represents the state of interaction with the nucleotide, the second state is achieved by swiveling around two flexible peptide linkers. This dramatic conformational transition brings the phosphocarrier residue in close proximity to phosphoenolpyruvate/pyruvate. The swiveling-domain paradigm provides an effective mechanism for communication in complex multidomain/multiactive site proteins.
Resumo:
A selective polyclonal antibody directed toward the C-terminal decapeptide common to the alpha subunits of Gq and G11 G proteins (G alpha q/G alpha 11) was prepared and used to investigate the subcellular distribution fo these proteins in WRK1 cells, a rat mammary tumor cell line. In immunoblots, the antibody recognized purified G alpha q and G alpha 11 proteins and labeled only two bands corresponding to these alpha subunits. Functional studies indicated that this antibody inhibited vasopressin- and guanosine 5'-[alpha-thio]triphosphate-sensitive phospholipase C activities. Immunofluorescence experiments done with this antibody revealed a filamentous labeling corresponding to intracytoplasmic and perimembranous actin-like filament structures. Colocalization of G alpha q/G alpha 11 and F-actin filaments (F-actin) was demonstrated by double-labeling experiments with anti-G alpha q/G alpha 11 and anti-actin antibodies. Immunoblot analysis of membrane, cytoskeletal, and F-actin-rich fractions confirmed the close association of G alpha q/G alpha 11 with actin. Large amounts of G alpha q/G alpha 11 were recovered in the desmin- and tubulin-free F-actin-rich fraction obtained by a double depolymerization-repolymerization cycle. Disorganization of F-actin filaments with cytochalasin D preserved G alpha q/G alpha 11 and F-actin colocalization but partially inhibited vasopressin- and fluoroaluminate-sensitive phospholipase C activity, suggesting that actin-associated G alpha q/G alpha 11 proteins play a role in signal transduction.