36 resultados para Voluntary maintenance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently analyzed experimental studies of mammalian muscle glycogen synthesis using metabolic control analysis and concluded that glycogen synthase (GSase) does not control the glycogenic flux but rather adapts to the flux which is controlled bv the activity of the proximal glucose transport and hexokinase steps. This model did not provide a role for the well established relationship between GSase fractional activity, determined by covalent phosphorylation, and the rate of glycogen synthesis. Here we propose that the phosphorylation of GSase, which alters the sensitivity to allosteric activation by glucose 6-phosphate (G6P), is a mechanism for controlling the concentration of G6P instead of controlling the flux. When the muscle cell is exposed to conditions which favor glycogen synthesis such as high plasma insulin and glucose concentrations the fractional activity of GSase is increased in coordination with increases in the activity of glucose transport and hexokinase. This increase in GSase fractional activity helps to maintain G6P homeostasis by reducing the G6P concentration required to activate GSase allosterically to match the flux determined by the proximal reactions. This role for covalent phosphorylation also provides a novel solution to the Kacser and Acarenza paradigm which requires coordinated activity changes of the enzymes proximal and distal to a shared intermediate, to avoid unwanted flux changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathogenic bacteria rely on adhesins to bind to host tissues. Therefore, the maintenance of the functional properties of these extracellular macromolecules is essential for the pathogenicity of these microorganisms. We report that peptide methionine sulfoxide reductase (MsrA), a repair enzyme, contributes to the maintenance of adhesins in Streptococcus pneumoniae, Neisseria gonorrhoeae, and Escherichia coli. A screen of a library of pneumococcal mutants for loss of adherence uncovered a MsrA mutant with 75% reduced binding to GalNAcbeta1-4Gal containing eukaryotic cell receptors that are present on type II lung cells and vascular endothelial cells. Subsequently, it was shown that an E. coli msrA mutant displayed decreased type I fimbriae-mediated, mannose-dependent, agglutination of erythrocytes. Previous work [Taha, M. K., So, M., Seifert, H. S., Billyard, E. & Marchal, C. (1988) EMBO J. 7, 4367-4378] has shown that mutants with defects in the pilA-pilB locus from N. gonorrhoeae were altered in their production of type IV pili. We show that pneumococcal MsrA and gonococcal PilB expressed in E. coli have MsrA activity. Together these data suggest that MsrA is required for the proper expression or maintenance of functional adhesins on the surfaces of these three major pathogenic bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experiments reported here were designed to test the hypothesis that the two-electron quinone reductase DT-diaphorase [NAD(P)H:(quinone-acceptor) oxidoreductase, EC 1.6.99.2] functions to maintain membrane-bound coenzyme Q (CoQ) in its reduced antioxidant state, thereby providing protection from free radical damage. DT-diaphorase was isolated and purified from rat liver cytosol, and its ability to reduce several CoQ homologs incorporated into large unilamellar vesicles was demonstrated. Addition of NADH and DT-diaphorase to either large unilamellar or multilamellar vesicles containing homologs of CoQ, including CoQ9 and CoQ10, resulted in the essentially complete reduction of the CoQ. The ability of DT-diaphorase to maintain the reduced state of CoQ and protect membrane components from free radical damage as lipid peroxidation was tested by incorporating either reduced CoQ9 or CoQ10 and the lipophylic azoinitiator 2,2'-azobis(2,4-dimethylvaleronitrile) into multilamellar vesicles in the presence of NADH and DT-diaphorase. The presence of DT-diaphorase prevented the oxidation of reduced CoQ and inhibited lipid peroxidation. The interaction between DT-diaphorase and CoQ was also demonstrated in an isolated rat liver hepatocyte system. Incubation with adriamycin resulted in mitochondrial membrane damage as measured by membrane potential and the release of hydrogen peroxide. Incorporation of CoQ10 provided protection from adriamycin-induced mitochondrial membrane damage. The incorporation of dicoumarol, a potent inhibitor of DT-diaphorase, interfered with the protection provided by CoQ. The results of these experiments provide support for the hypothesis that DT-diaphorase functions as an antioxidant in both artificial membrane and natural membrane systems by acting as a two-electron CoQ reductase that forms and maintains the antioxidant form of CoQ. The suggestion is offered that DT-diaphorase was selected during evolution to perform this role and that its conversion of xenobiotics and other synthetic molecules is secondary and coincidental.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linkage disequilibrium between polymorphisms in a natural population may result from various evolutionary forces, including random genetic drift due to sampling of gametes during reproduction, restricted migration between subpopulations in a subdivided population, or epistatic selection. In this report, we present evidence that the majority of significant linkage disequilibria observed in introns of the alcohol dehydrogenase locus (Adh) of Drosophila pseudoobscura are due to epistatic selection maintaining secondary structure of precursor mRNA (pre-mRNA). Based on phylogenetic-comparative analysis and a likelihood approach, we propose secondary structure models of Adh pre-mRNA for the regions of the adult intron and intron 2 where clustering of linkage disequilibria has been observed. Furthermore, we applied the likelihood ratio test to the phylogenetically predicted secondary structure in intron 1. In contrast to the other two structures, polymorphisms associated with the more conserved stem-loop structure of intron 1 are in low frequency, and linkage disequilibria have not been observed. These findings are qualitatively consistent with a model of compensatory fitness interactions. This model assumes that mutations disrupting pairing in a secondary structural element are individually deleterious if they destabilize a functionally important structure; a second "compensatory" mutation, however, may restabilize the structure and restore fitness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous synaptic proteins, including several integral membrane proteins, have been assigned roles in synaptic vesicle fusion with or retrieval from the presynaptic plasma membrane. In contrast, the synapsins, neuron-specific phosphoproteins associated with the cytoplasmic surface of synaptic vesicles, appear to play a much broader role, being involved in the regulation of neurotransmitter release and in the organization of the nerve terminal. Here we have administered antisense synapsin II oligonucleotides to dissociated hippocampal neurons, either before the onset of synaptogenesis or 1 week after the onset of synaptogenesis. In both cases, synapsin II was no longer detectable within 24-48 h of treatment. After 5 days of treatment, cultures were analyzed for the presence of synapses by synapsin I and synaptophysin antibody labeling and by electron microscopy. Cultures in which synapsin II was suppressed after axon elongation, but before synapse formation, did not develop synapses. Cultures in which synapsin II was suppressed after the development of synapses lost most of their synapses. Remarkably, with the removal of the antisense oligonucleotides, neurons and their synaptic connections recovered. These studies lead us to conclude that synapsin II is involved in the formation and maintenance of synapses in hippocampal neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunization of rodents and humans with irradiation-attenuated malaria sporozoites confers preerythrocytic stage-specific protective immunity to challenge infection. This immunity is directed against intrahepatic parasites and involves T cells and interferon gamma, which prevent development of exoerythrocytic stages and subsequent blood infection. The present study was undertaken to determine how protective immunity is achieved after immunization of rodent hosts with irradiated Plasmodium berghei sporozoites. We present evidence that irradiated parasites persist in hepatocytes of rats and mice for up to 6 months after immunization. A relationship between the persistence of parasites and the maintenance of protective immunity was observed. Protective immunity was abrogated in irradiated-sporozoite-immunized rats following the application of chemotherapy to remove preexisting liver parasites. Additionally, protective immunity against sporozoite challenge was established in rats vaccinated with early and late hepatic stages of irradiated parasites. These results show that irradiation-attenuated sporozoites produce persistent intrahepatic stages in vivo necessary for the induction and maintenance of protective immunity.