69 resultados para Visual Cortex. Local Field Potential. Assemblies. Context stimuli


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the formation of connections during the development of the nervous system, it is generally accepted that there is an early phase not requiring neural activity and a later activity-dependent phase. The initial processes of axonal pathfinding and target selection are not thought to require neural activity, whereas the later fine-tuning of connections into their final adult patterns does. We report an apparent exception to this rule in which action potential activity seems to be required very early in development for thalamic axons to form appropriate patterns of terminal arborizations with their ultimate target neurons in layer 4 of the cerebral cortex. Blockade of sodium action potentials during the 2-week fetal period when visual thalamic axons initially grow into the primary visual cortex in cats prevents the normally occurring branching of lateral geniculate nucleus axons within layer 4. This observation implies a role for action-potential activity in cerebral cortical development far earlier than previously suspected, weeks before eye-opening and the onset of the well-known process of activity-dependent reorganization of axonal terminal arbors that leads to the formation of ocular dominance columns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stages of integration leading from local feature analysis to object recognition were explored in human visual cortex by using the technique of functional magnetic resonance imaging. Here we report evidence for object-related activation. Such activation was located at the lateral-posterior aspect of the occipital lobe, just abutting the posterior aspect of the motion-sensitive area MT/V5, in a region termed the lateral occipital complex (LO). LO showed preferential activation to images of objects, compared to a wide range of texture patterns. This activation was not caused by a global difference in the Fourier spatial frequency content of objects versus texture images, since object images produced enhanced LO activation compared to textures matched in power spectra but randomized in phase. The preferential activation to objects also could not be explained by different patterns of eye movements: similar levels of activation were observed when subjects fixated on the objects and when they scanned the objects with their eyes. Additional manipulations such as spatial frequency filtering and a 4-fold change in visual size did not affect LO activation. These results suggest that the enhanced responses to objects were not a manifestation of low-level visual processing. A striking demonstration that activity in LO is uniquely correlated to object detectability was produced by the "Lincoln" illusion, in which blurring of objects digitized into large blocks paradoxically increases their recognizability. Such blurring led to significant enhancement of LO activation. Despite the preferential activation to objects, LO did not seem to be involved in the final, "semantic," stages of the recognition process. Thus, objects varying widely in their recognizability (e.g., famous faces, common objects, and unfamiliar three-dimensional abstract sculptures) activated it to a similar degree. These results are thus evidence for an intermediate link in the chain of processing stages leading to object recognition in human visual cortex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As demonstrated by anatomical and physiological studies, the cerebral cortex consists of groups of cortical modules, each comprising populations of neurons with similar functional properties. This functional modularity exists in both sensory and association neocortices. However, the role of such cortical modules in perceptual and cognitive behavior is unknown. To aid in the examination of this issue we have applied the high spatial resolution optical imaging methodology to the study of awake, behaving animals. In this paper, we report the optical imaging of orientation domains and blob structures, approximately 100–200 μm in size, in visual cortex of the awake and behaving monkey. By overcoming the spatial limitations of other existing imaging methods, optical imaging will permit the study of a wide variety of cortical functions at the columnar level, including motor and cognitive functions traditionally studied with positron-emission tomography or functional MRI techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detection of a visual signal can be facilitated by simultaneous presentation of a similar subthreshold signal. Here we show that the facilitatory effect of a subthreshold signal can persist for more than 16 s. Presenting a near-threshold Gabor signal (prime) produced a phase-independent increase in contrast sensitivity (40%) to similar successive signals (target) for a period of up to 16 s. This effect was obtained only when both prime and target were presented to the same eye. We further show that the memory trace is inactivated by presenting high-contrast signals before the target. These results suggest that activated neurons in the primary visual cortex retain a near-threshold memory trace that persists until reactivated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following striate cortex damage in monkeys and humans there can be residual function mediated by parallel visual pathways. In humans this can sometimes be associated with a “feeling” that something has happened, especially with rapid movement or abrupt onset. For less transient events, discriminative performance may still be well above chance even when the subject reports no conscious awareness of the stimulus. In a previous study we examined parameters that yield good residual visual performance in the “blind” hemifield of a subject with unilateral damage to the primary visual cortex. With appropriate parameters we demonstrated good discriminative performance, both with and without conscious awareness of a visual event. These observations raise the possibility of imaging the brain activity generated in the “aware” and the “unaware” modes, with matched levels of discrimination performance, and hence of revealing patterns of brain activation associated with visual awareness. The intact hemifield also allows a comparison with normal vision. Here we report the results of a functional magnetic resonance imaging study on the same subject carried out under aware and unaware stimulus conditions. The results point to a shift in the pattern of activity from neocortex in the aware mode, to subcortical structures in the unaware mode. In the aware mode prestriate and dorsolateral prefrontal cortices (area 46) are active. In the unaware mode the superior colliculus is active, together with medial and orbital prefrontal cortical sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent experimental evidence has shown that application of certain neurotrophic factors (NTs) to the developing primary visual cortex prevents the development of ocular dominance (OD) columns. One interpretation of this result is that afferents from the lateral geniculate nucleus compete for postsynaptic trophic factor in an activity-dependent manner. Application of excess trophic factor eliminates this competition, thereby preventing OD column formation. We present a model of OD column development, incorporating Hebbian synaptic modification and activity-driven competition for NT, which accounts for both normal OD column development as well as the prevention of that development when competition is removed. In the “control” situation, when available NT is below a critical amount, OD columns form normally. These columns form without weight normalization procedures and in the presence of positive inter-eye correlations. In the “experimental” case, OD column development is prevented in a local neighborhood in which excess NT has been added. Our model proposes a biologically plausible mechanism for competition between neural populations that is motivated by several pieces of experimental data, thereby accounting for both normal and experimentally perturbed conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serotonin systems have been implicated in the regulation of hippocampal function. Serotonin 5-HT2C receptors are widely expressed throughout the hippocampal formation, and these receptors have been proposed to modulate synaptic plasticity in the visual cortex. To assess the contribution of 5-HT2C receptors to the serotonergic regulation of hippocampal function, mice with a targeted 5-HT2C-receptor gene mutation were examined. An examination of long-term potentiation at each of four principal regions of the hippocampal formation revealed a selective impairment restricted to medial perforant path–dentate gyrus synapses of mutant mice. This deficit was accompanied by abnormal performance in behavioral assays associated with dentate gyrus function. 5-HT2C receptor mutants exhibited abnormal performance in the Morris water maze assay of spatial learning and reduced aversion to a novel environment. These deficits were selective and were not associated with a generalized learning deficit or with an impairment in the discrimination of spatial context. These results indicate that a genetic perturbation of serotonin receptor function can modulate dentate gyrus plasticity and that plasticity in this structure may contribute to neural mechanisms underlying hippocampus-dependent behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subcortical nuclei in the thalamus, which play an important role in many functions of the human brain, provide challenging targets for functional mapping with neuroimaging techniques because of their small sizes and deep locations. In this study, we explore the capability of high-resolution functional magnetic resonance imaging at 4 Tesla for mapping the retinotopic organization in the lateral geniculate nucleus (LGN). Our results show that the hemifield visual stimulation only activates LGN in the contralateral hemisphere, and the lower-field and upper-field visual stimulations activate the superior and inferior portion of LGN, respectively. These results reveal a similar retinotopic organization between the human and nonhuman primate LGN and between LGN and the primary visual cortex. We conclude that high-resolution functional magnetic resonance imaging is capable of functional mapping of suborganizations in small nuclei together with cortical activation. This will have an impact for studying the thalamocortical networks in the human brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combined lesions of retinal targets and ascending auditory pathways can induce, in developing animals, permanent retinal projections to auditory thalamic nuclei and to visual thalamic nuclei that normally receive little direct retinal input. Neurons in the auditory cortex of such animals have visual response properties that resemble those of neurons in the primary visual cortex of normal animals. Therefore, we investigated the behavioral function of the surgically induced retino-thalamo-cortical pathways. We showed that both surgically induced pathways can mediate visually guided behaviors whose normal substrate, the pathway from the retina to the primary visual cortex via the primary thalamic visual nucleus, is missing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe experiments on behaving rats with electrodes implanted on the cornea, in the optic chiasm, and on the visual cortex; in addition, two red light-emitting diodes (LED) are permanently attached to the skull over the left eye. Recordings timelocked to the LED flashes reveal both the local events at each electrode site and the orderly transfer of visual information from retina to cortex. The major finding is that every stimulus, regardless of its luminance, duration, or the state of retinal light adaptation, elicits an optic nerve volley with a latency of about 10 ms and a duration of about 300 ms. This phenomenon has not been reported previously, so far as we are aware. We conclude that the retina, which originates from the forebrain of the developing embryo, behaves like a typical brain structure: it translates, within a few hundred milliseconds, the chemical information in each pattern of bleached photoreceptors into a corresponding pattern of ganglion cell neuronal information that leaves via the optic nerve. The attributes of each rat ganglion cell appear to include whether the retinal neuropile calls on it to leave after a stimulus and, if so when, within a 300-ms poststimulus epoch. The resulting retinal analysis of the scene, on arrival at the cortical level, is presumed to participate importantly in the creation of visual perceptual experiences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the mammalian visual system the formation of eye-specific layers at the thalamic level depends on retinal waves of spontaneous activity, which rely on nicotinic acetylcholine receptor activation. We found that in mutant mice lacking the β2 subunit of the neuronal nicotinic receptor, but not in mice lacking the α4 subunit, retinofugal projections do not segregate into eye-specific areas, both in the dorso-lateral geniculate nucleus and in the superior colliculus. Moreover, β2−/− mice show an expansion of the binocular subfield of the primary visual cortex and a decrease in visual acuity at the cortical level but not in the retina. We conclude that the β2 subunit of the nicotinic acetylcholine receptor is necessary for the anatomical and functional development of the visual system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Working memory is the process of actively maintaining a representation of information for a brief period of time so that it is available for use. In monkeys, visual working memory involves the concerted activity of a distributed neural system, including posterior areas in visual cortex and anterior areas in prefrontal cortex. Within visual cortex, ventral stream areas are selectively involved in object vision, whereas dorsal stream areas are selectively involved in spatial vision. This domain specificity appears to extend forward into prefrontal cortex, with ventrolateral areas involved mainly in working memory for objects and dorsolateral areas involved mainly in working memory for spatial locations. The organization of this distributed neural system for working memory in monkeys appears to be conserved in humans, though some differences between the two species exist. In humans, as compared with monkeys, areas specialized for object vision in the ventral stream have a more inferior location in temporal cortex, whereas areas specialized for spatial vision in the dorsal stream have a more superior location in parietal cortex. Displacement of both sets of visual areas away from the posterior perisylvian cortex may be related to the emergence of language over the course of brain evolution. Whereas areas specialized for object working memory in humans and monkeys are similarly located in ventrolateral prefrontal cortex, those specialized for spatial working memory occupy a more superior and posterior location within dorsal prefrontal cortex in humans than in monkeys. As in posterior cortex, this displacement in frontal cortex also may be related to the emergence of new areas to serve distinctively human cognitive abilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many response properties in primary auditory cortex (AI) are segregated spatially and organized topographically as those in primary visual cortex. Intensive study has not revealed an intrinsic, anatomical organizing principle related to an AI functional topography. We used retrograde anatomic tracing and topographic physiologic mapping of acoustic response properties to reveal long-range (≥1.5 mm) convergent intrinsic horizontal connections between AI subregions with similar bandwidth and characteristic frequency selectivity. This suggests a modular organization for processing spectral bandwidth in AI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac hypertrophy is associated with altered expression of the components of the cardiac renin-angiotensin system (RAS). While in vitro data suggest that local mechanical stimuli serve as important regulatory modulators of cardiac RAS activity, no in vivo studies have so far corroborated these observations. The aims of this study were to (i) examine the respective influence of local, mechanical versus systemic, soluble factors on the modulation of cardiac RAS gene expression in vivo; (ii) measure gene expression of all known components of the RAS simultaneously; and (iii) establish sequence information and an assay system for the RAS of the dog, one of the most important model organisms in cardiovascular research. We therefore examined a canine model of right ventricular hypertrophy and failure (RVHF) in which the right ventricle (RV) is hemodynamically loaded, the left ventricle (LV) is hemodynamically unloaded, while both are exposed to the same circulating milieu of soluble factors. Using specific competitive PCR assays, we found that RVHF was associated with significant increases in RV mRNA levels of angiotensin converting enzyme and angiotensin II type 2 receptor, and with significant decreases of RV expression of chymase and the angiotensin II type 1 receptor, while RV angiotensinogen and renin remained unchanged. All components remained unchanged in the LV. We conclude that (i) dissociated regional regulation of RAS components in RV and LV indicates modulation by local, mechanical, not soluble, systemic stimuli; (ii) components of the cardiac RAS are independently and differentially regulated; and (iii) opposite changes in the expression of angiotensin converting enzyme and chymase, and of angiotensin II type I and angiotensin II type 2 receptors, may indicate different physiological roles of these RAS components in RVHF.