42 resultados para Variants of FSGS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A M182T substitution was discovered as a second-site suppressor of a missense mutation in TEM-1 β-lactamase. The combination of the M182T substitution with other substitutions in the enzyme indicates the M182T substitution is a global suppressor of missense mutations in β-lactamase. The M182T substitution also is found in natural variants of TEM-1 β-lactamase with altered substrate specificity that have evolved in response to antibiotic therapy. The M182T substitution may have been selected in natural isolates as a suppressor of folding or stability defects resulting from mutations associated with drug resistance. This pathway of protein evolution may occur in other targets of antimicrobial drugs such as the HIV protease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have used two monovalent phage display libraries containing variants of the Zif268 DNA-binding domain to obtain families of zinc fingers that bind to alterations in the last 4 bp of the DNA sequence of the Zif268 consensus operator, GCG TGGGCG. Affinity selection was performed by altering the Zif268 operator three base pairs at a time, and simultaneously selecting for sets of 16 related DNA sequences. In this way, only four experiments were required to select for all possible 64 combinations of DNA triplet sequences. The results show that (i) for high-affinity DNA binding in the range observed for the Zif268 wild-type complex (Kd = 0.5–5 nM), finger 1 specifically requires the arginine at the carboxy terminus of its recognition helix that forms a bidentate hydrogen-bond with the guanine base (G) in the crystal structure of Zif268 complexed to its DNA operator sequence GCG TGG GCG; (ii) when the guanine base (G) is replaced by A, C, or T, a lower-affinity family (Kd ⩾ 50 nM) can be detected that shows an overall tendency to bind G-rich DNA; (iii) the residues at position 2 on the finger 2 recognition helix do not appear to interact strongly with the complementary 5′ base in the finger 1 binding site; and (iv) unexpected substitutions at the amino terminus of finger 1 can occasionally result in specificity for the 3′ base in the finger 1 binding site. A DNA recognition directory was constructed for high-affinity zinc fingers that recognize all three bases in a DNA triplet for seven sequences of the type GNN. Similar approaches may be applied to other zinc fingers to broaden the scope of the directory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ribozyme RNase P absolutely requires divalent metal ions for catalytic function. Multiple Mg2+ ions contribute to the optimal catalytic efficiency of RNase P, and it is likely that the tertiary structure of the ribozyme forms a specific metal-binding pocket for these ions within the active-site. To identify base moieties that contribute to catalytic metal-binding sites, we have used in vitro selection to isolate variants of the Escherichia coli RNase P RNA with altered specificities for divalent metal. RNase P RNA variants with increased activity in Ca2+ were enriched over 18 generations of selection for catalysis in the presence of Ca2+, which is normally disfavored relative to Mg2+. Although a wide spectrum of mutations was found in the generation-18 clones, only a single point mutation was common to all clones: a cytosine-to-uracil transition at position 70 (E. coli numbering) of RNase P. Analysis of the C70U point mutant in a wild-type background confirmed that the identity of the base at position 70 is the sole determinant of Ca2+ selectivity. It is noteworthy that C70 lies within the phylogenetically well conserved J3/4-P4-J2/4 region, previously implicated in Mg2+ binding. Our finding that a single base change is sufficient to alter the metal preference of RNase P is further evidence that the J3/4-P4-J2/4 domain forms a portion of the ribozyme’s active site.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antagonists of growth hormone-releasing hormone (GHRH) inhibit the proliferation of various human cancers in vitro and in vivo by mechanisms that include apparent direct effects through specific binding sites expressed on tumors and that differ from pituitary human GHRH (hGHRH) receptors. In this study, GHRH antagonist JV-1–38 (20 μg/day per animal s.c.) inhibited the growth of orthotopic CAKI-1 human renal cell carcinoma (RCC) by 83% and inhibited the development of metastases to lung and lymph nodes. Using ligand competition assays with 125I-labeled GHRH antagonist JV-1–42, we demonstrated the presence of specific high-affinity (Kd = 0.25 ± 0.03 nM) binding sites for GHRH with a maximal binding capacity (Bmax) of 70.2 ± 4.1 fmol/mg of membrane protein in CAKI-1 tumors. These receptors bind GHRH antagonists preferentially and display a lower affinity for hGHRH. The binding of 125I-JV-1–42 is not inhibited by vasoactive intestinal peptide (VIP)-related peptides sharing structural homology with hGHRH. The receptors for GHRH antagonists on CAKI-1 tumors are distinct from binding sites detected with 125I-VIP (Kd = 0.89 ± 0.14 nM; Bmax = 183.5 ± 2.6 fmol/mg of protein) and also have different characteristics from GHRH receptors on rat pituitary as documented by the insignificant binding of [His1,125I-Tyr10,Nle27]hGHRH(1–32)NH2. Reverse transcription-PCR revealed the expression of splice variants of hGHRH receptor in CAKI-1 RCC. Biodistribution studies demonstrate an in vivo uptake of 125I-JV-1–42 by the RCC tumor tissue. The presence of specific receptor proteins that bind GHRH antagonists in CAKI-1 RCC supports the view that distinct binding sites that mediate the inhibitory effect of GHRH antagonists are present on various human cancers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Drug-induced long QT syndrome (LQTS) is a prevalent disorder of uncertain etiology that predisposes to sudden death. KCNE2 encodes MinK-related peptide 1 (MiRP1), a subunit of the cardiac potassium channel IKr that has been associated previously with inherited LQTS. Here, we examine KCNE2 in 98 patients with drug-induced LQTS, identifying three individuals with sporadic mutations and a patient with sulfamethoxazole-associated LQTS who carried a single-nucleotide polymorphism (SNP) found in ≈1.6% of the general population. While mutant channels showed diminished potassium flux at baseline and wild-type drug sensitivity, channels with the SNP were normal at baseline but inhibited by sulfamethoxazole at therapeutic levels that did not affect wild-type channels. We conclude that allelic variants of MiRP1 contribute to a significant fraction of cases of drug-induced LQTS through multiple mechanisms and that common sequence variations that increase the risk of life-threatening drug reactions can be clinically silent before drug exposure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metastasis is the primary cause of death in human breast cancer. Metastasis to bone, lungs, liver, and brain involves dissemination of breast cancer cells via the bloodstream and requires adhesion within the vasculature. Blood cell adhesion within the vasculature depends on integrins, a family of transmembrane adhesion receptors, and is regulated by integrin activation. Here we show that integrin αvβ3 supports breast cancer cell attachment under blood flow conditions in an activation-dependent manner. Integrin αvβ3 was found in two distinct functional states in human breast cancer cells. The activated, but not the nonactivated, state supported tumor cell arrest during blood flow through interaction with platelets. Importantly, activated αvβ3 was expressed by freshly isolated metastatic human breast cancer cells and variants of the MDA-MB 435 human breast cancer cell line, derived from mammary fat pad tumors or distant metastases in severe combined immunodeficient mice. Expression of constitutively activated mutant αvβ3D723R, but not αvβ3WT, in MDA-MB 435 cells strongly promoted metastasis in the mouse model. Thus breast cancer cells can exhibit a platelet-interactive and metastatic phenotype that is controlled by the activation of integrin αvβ3. Consequently, alterations within tumors that lead to the aberrant control of integrin activation are expected to adversely affect the course of human breast cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ligase-mediated gene detection has proven valuable for detection and precise distinction of DNA sequence variants. We have recently shown that T4 DNA ligase can also be used to distinguish single nucleotide variants of RNA sequences. Here we describe parameters that influence RNA-templated DNA ligation by T4 DNA ligase. The reaction proceeds much more slowly, requiring more enzyme, compared to ligation of the same oligonucleotides hybridized to the corresponding DNA sequence. The reaction is inhibited at high concentrations of ATP and NaCl and both magnesium and manganese ions can support the reaction. We define reaction conditions where 80% of RNA target molecules can template a diagnostic ligation reaction. Ligase-mediated RNA detection should provide a useful mechanism for sensitive and accurate detection and distinction of RNA sequence variants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding the mechanism of protein secondary structure formation is an essential part of the protein-folding puzzle. Here, we describe a simple statistical mechanical model for the formation of a β-hairpin, the minimal structural element of the antiparallel β-pleated sheet. The model accurately describes the thermodynamic and kinetic behavior of a 16-residue, β-hairpin-forming peptide, successfully explaining its two-state behavior and apparent negative activation energy for folding. The model classifies structures according to their backbone conformation, defined by 15 pairs of dihedral angles, and is further simplified by considering only the 120 structures with contiguous stretches of native pairs of backbone dihedral angles. This single sequence approximation is tested by comparison with a more complete model that includes the 215 possible conformations and 15 × 215 possible kinetic transitions. Finally, we use the model to predict the equilibrium unfolding curves and kinetics for several variants of the β-hairpin peptide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two families of peptides that specifically bind the extracellular domain of the human type I interleukin I (IL-1) receptor were identified from recombinant peptide display libraries. Peptides from one of these families blocked binding of IL-lalpha to the type I IL-1 receptor with IC50 values of 45-140 microM. Affinity-selective screening of variants of these peptides produced ligands of much higher affinity (IC50 approximately 2 nM). These peptides block IL-1-driven responses in human and monkey cells; they do not bind the human type II IL-1 receptor or the murine type I IL-1 receptor. This is the first example (that we know of) of a high affinity peptide that binds to a cytokine receptor and acts as a cytokine antagonist.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Leptin and its receptor, obese receptor (OB-R), comprise an important signaling system for the regulation of body weight. Splice variants of OB-R mRNA encode proteins that differ in the length of their cytoplasmic domains. We cloned a long isoform of the wild-type leptin receptor that is preferentially expressed in the hypothalamus and show that it can activate signal transducers and activators of transcription (STAT)-3, STAT-5, and STAT-6. A point mutation within the OB-R gene of diabetic (db) mice generates a new splice donor site that dramatically reduces expression of this long isoform in homozygous db/db mice. In contrast, an OB-R protein with a shorter cytoplasmic domain is present in both db/db and wild-type mice. We show that this short isoform is unable to activate the STAT pathway. These data provide further evidence that the mutation in OB-R causes the db/db phenotype and identify three STAT proteins as potential mediators of the anti-obesity effects of leptin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a quantitative model for T-cell activation in which the rate of dissociation of ligand from T-cell receptors determines the agonist and antagonist properties of the ligand. The ligands are molecular complexes between antigenic peptides and proteins of the major histocompatibility complex on the surfaces of antigen-presenting cells. Binding of ligand to receptor triggers a series of biochemical reactions in the T cell. If the ligand dissociates after these reactions are complete, the T cell receives a positive activation signal. However, dissociation of ligand after completion of the first reaction but prior to generation of the final products results in partial T-cell activation, which acts to suppress a positive response. Such a negative signal is brought about by T-cell ligands containing the variants of antigenic peptides referred to as T-cell receptor antagonists. Results of recent experiments with altered peptide ligands compare favorably with T-cell responses predicted by this model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

DNA and RNA are the polynucleotides known to carry genetic information in life. Chemical variants of DNA and RNA backbones have been used in structure-function and biosynthesis studies in vitro, and in antisense pharmacology, where their properties of nuclease resistance and enhanced cellular uptake are important. This study addressed the question of whether the base(s) attached to artificial backbones encodes genetic information that can be transferred in vivo. Oligonucleotides containing chemical variants of DNA or RNA were used as primers for site-specific mutagenesis of bacteriophage f1. Progeny phage were scored both genetically and physically for the inheritance of information originally encoded by bases attached to the nonstandard backbones. Four artificial backbone chemistries were tested: phosphorothioate DNA, phosphorothioate RNA, 2'-O-methyl RNA and methylphosphonate DNA. All four were found capable of faithful information transfer from their attached bases when one or three artificial positions were flanked by normal DNA. Among oligonucleotides composed entirely of nonstandard backbones, only phosphorothioate DNA supported genetic information transfer in vivo.