41 resultados para Trapping


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cu,Zn-superoxide dismutase (SOD) is known to be a locus of mutation in familial amyotrophic lateral sclerosis (FALS). Transgenic mice that express a mutant Cu,Zn-SOD, Gly-93--> Ala (G93A), have been shown to develop amyotrophic lateral sclerosis (ALS) symptoms. We cloned the FALS mutant, G93A, and wild-type cDNA of human Cu,Zn-SOD, overexpressed them in Sf9 insect cells, purified the proteins, and studied their enzymic activities for catalyzing the dismutation of superoxide anions and the generation of free radicals with H2O2 as substrate. Our results showed that both enzymes contain one copper ion per subunit and have identical dismutation activity. However, the free radical-generating function of the G93A mutant, as measured by the spin trapping method, is enhanced relative to that of the wild-type enzyme, particularly at lower H2O2 concentrations. This is due to a small, but reproducible, decrease in the value of Km for H2O2 for the G93A mutant, while the kcat is identical for both enzymes. Thus, the ALS symptoms observed in G93A transgenic mice are not caused by the reduction of Cu,Zn-SOD activity with the mutant enzyme; rather, it is induced by a gain-of-function, an enhancement of the free radical-generating function. This is consistent with the x-ray crystallographic studies showing the active channel of the FALS mutant is slightly larger than that of the wild-type enzyme; thus, it is more accessible to H2O2. This gain-of-function, in part, may provide an explanation for the association between ALS and Cu,Zn-SOD mutants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial lipopolysaccharide (LPS) is a potent stimulator of B-cell activation, proliferation, and differentiation. We examined the genetic response of B-lineage cells to LPS via trapping of expressed genes with a gene-trap retrovirus. This analysis showed that expression of only a small fraction of genes is altered during LPS stimulation of B-lineage cells. Isolation of the cellular portion of the trapped LPS-response genes via 5' RACE (rapid amplification of cDNA ends) cloning identified novel genes for all the cloned loci. These novel LPS-response genes were also found to have differentiation stage-restricted expression within the B-lymphoid lineage. That LPS-response genes in B cells also have differentiation stage-restricted expression suggests that these genes may be involved in the control of B-cell function and differentiation, since the known members of this class of genes have frequently been found to play a role in the function and differentiation of B-lineage cells. The isolation of novel members of this class of genes, including a gene that contains a putative SH2 domain, will further increase our understanding of the molecular events involved in the control of B-cell differentiation and function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of nitric oxide (NO) in the pathogenesis of influenza virus-induced pneumonia in mice was investigated. Experimental influenza virus pneumonia was produced with influenza virus A/Kumamoto/Y5/67(H2N2). Both the enzyme activity of NO synthase (NOS) and mRNA expression of the inducible NOS were greatly increased in the mouse lungs; increases were mediated by interferon gamma. Excessive production of NO in the virus-infected lung was studied further by using electron spin resonance (ESR) spectroscopy. In vivo spin trapping with dithiocarbamate-iron complexes indicated that a significant amount of NO was generated in the virus-infected lung. Furthermore, an NO-hemoglobin ESR signal appeared in the virus-infected lung, and formation of NO-hemoglobin was significantly increased by treatment with superoxide dismutase and was inhibited by N(omega)-monomethyl-L-arginine (L-NMMA) administration. Immunohistochemistry with a specific anti-nitrotyrosine antibody showed intense staining of alveolar phagocytic cells such as macrophages and neutrophils and of intraalveolar exudate in the virus-infected lung. These results strongly suggest formation of peroxynitrite in the lung through the reaction of NO with O2-, which is generated by alveolar phagocytic cells and xanthine oxidase. In addition, administration of L-NMMA resulted in significant improvement in the survival rate of virus-infected mice without appreciable suppression of their antiviral defenses. On the basis of these data, we conclude that NO together with O2- which forms more reactive peroxynitrite may be the most important pathogenic factors in influenza virus-induced pneumonia in mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A transposon based on the transposable element Minos from Drosophila hydei was introduced into the genome of Drosophila melanogaster using transformation mediated by the Minos transposase. The transposon carries a wild-type version of the white gene (w) of Drosophila inserted into the second exon of Minos. Transformation was obtained by injecting the transposon into preblastoderm embryos that were expressing transposase either from a Hsp70-Minos fusion inserted into the genome via P-element-mediated transformation or from a coinjected plasmid carrying the Hsp70-Minos fusion. Between 1% and 6% of the fertile injected individuals gave transformed progeny. Four of the insertions were cloned and the DNA sequences flanking the transposon ends were determined. The "empty" sites corresponding to three of the insertions were amplified from the recipient strain by PCR, cloned, and sequenced. In all cases, the transposon has inserted into a TA dinucleotide and has created the characteristic TA target site duplication. In the absence of transposase, the insertions were stable in the soma and the germ line. However, in the presence of the Hsp70-Minos gene the Minos-w transposon excises, resulting in mosaic eyes and germ-line reversion to the white phenotype. Minos could be utilized as an alternative to existing systems for transposon tagging and enhancer trapping in Drosophila; it might also be of use as a germ-line transformation vector for non-Drosophila insects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many features of Down syndrome might result from the overdosage of only a few genes located in a critical region of chromosome 21. To search for these genes, cosmids mapping in this region were isolated and used for trapping exons. One of the trapped exons obtained has a sequence very similar to part of the Drosophila single-minded (sim) gene, a master regulator of the early development of the fly central nervous system midline. Mapping data indicated that this exonic sequence is only present in the Down syndrome-critical region in the human genome. Hybridization of this exonic sequence with human fetal kidney poly(A)+ RNA revealed two transcripts of 6 and 4.3 kb. In situ hybridization of a probe derived from this exon with human and rat fetuses showed that the corresponding gene is expressed during early fetal life in the central nervous system and in other tissues, including the facial, skull, palate, and vertebra primordia. The expression pattern of this gene suggests that it might be involved in the pathogenesis of some of the morphological features and brain anomalies observed in Down syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of the short half-life of NO, previous studies implicating NO in central nervous system pathology during infection had to rely on the demonstration of elevated levels of NO synthase mRNA or enzyme expression or NO metabolites such as nitrate and nitrite in the infected brain. To more definitively investigate the potential causative role of NO in lesions of the central nervous system in animals infected with neurotropic viruses or suffering from experimental allergic encephalitis, we have determined directly the levels of NO present in the central nervous system of such animals. Using spin trapping of NO and electron paramagnetic resonance spectroscopy, we confirm here that copious amounts of NO (up to 30-fold more than control) are elaborated in the brains of rats infected with rabies virus or borna disease virus, as well as in the spinal cords of rats that had received myelin basic protein-specific T cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A human gene with strong homology to the MAGE gene family located in Xq27-qter has been isolated by using exon-trapping of cosmids in the Xp21.3 region. We have mapped and sequenced cDNA and genomic clones corresponding to this gene, MAGE-Xp, and shown that the last exon contains the open reading frame and is present in a minimum of five copies in a 30-kb interval. MAGE-Xp is expressed only in testis and, unlike the Xq27-qter MAGE genes, it is not expressed in any of 12 different tumor tissues tested. However, the gene and predicted protein structure are conserved, suggesting a similar function. MAGE-Xp is located in the 160-kb critical interval defined for the locus involved in sex determination within Xp21 and is 50 kb distal to the DAX-1 gene, which is responsible for X-chromosome-linked adrenal hypoplasia congenita.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent results have demonstrated that the spin trapping agent N-tert-butyl-alpha-phenylnitrone (PBN) reduces infarct size due to middle cerebral artery occlusion (MCAO), even when given after ischemia. The objective of the present study was to explore whether PBN influences recovery of energy metabolism. MCAO of 2-hr duration was induced in rats by an intraluminal filament technique. Brains were frozen in situ at the end of ischemia and after 1, 2, and 4 hr of recirculation. PBN was given 1 hr after recirculation. Neocortical focal and perifocal ("penumbra") areas were sampled for analyses of phosphocreatine (PCr), creatine, ATP, ADP, AMP, glycogen, glucose, and lactate. The penumbra showed a moderate-to-marked decrease and the focus showed a marked decrease in PCr and ATP concentrations, a decline in the sum of adenine nucleotides, near-depletion of glycogen, and an increase in lactate concentration after 2 hr of ischemia. Recirculation for 1 hr led to only a partial recovery of energy state, with little further improvement after 2 hr and signs of secondary deterioration after 4 hr, particularly in the focus. After 4 hr of recirculation, PBN-treated animals showed pronounced recovery of energy state, with ATP and lactate contents in both focus and penumbra approaching normal values. Although an effect of PBN on mitochondria cannot be excluded, the results suggest that PBN acts by preventing a gradual compromise of microcirculation. The results justify a reevaluation of current views on the pathophysiology of focal ischemic damage and suggest that a therapeutic window of many hours exists in stroke.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human diploid fibroblast cells cease growth in culture after a finite number of population doublings. To address the cause of growth cessation in senescent IMR-90 human fibroblast cells, we determined the level of oxidative DNA damage by using 8-oxoguanine excised from DNA and 8-oxo-2'-deoxyguanosine in DNA as markers. Senescent cells excise from DNA four times more 8-oxoguanine per day than do early-passage young cells. The steady-state level of 8-oxo-2'-deoxyguanosine in DNA is approximately 35% higher in senescent cells than in young cells. Measurement of protein carbonyls shows that senescent cells did not appear to have elevated protein oxidation. To reduce the level of oxidative damage, we cultured cells under a more physiological O2 concentration (3%) and compared the replicative life span to the cells cultured at the O2 concentration of air (20%). We found that cells grown under 3% O2 achieved 50% more population doublings during their lifetime. Such an extension of life span resulted from the delayed onset of senescence and elevation of growth rate and saturation density of cells at all passages. The spin-trapping agent alpha-phenyl-t-butyl nitrone (PBN), which can act as an antioxidant, also effectively delayed senescence and rejuvenated near senescent cells. The effect is dose-dependent and is most pronounced for cells at the stage just before entry into senescence. Our data support the hypothesis that oxidative DNA damage contributes to replicative cessation in human diploid fibroblast cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the detection of endogenous intracellular glutathionyl (GS.) radicals in the intact neuroblastoma cell line NCB-20 under oxidative stress. Spin-trapping and electron paramagnetic resonance (EPR) spectroscopic methods were used for monitoring the radicals. The cells incubated with the spin trap 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) were challenged with H2O2 generated by the enzymic reaction of glucose/glucose oxidase. These cells exhibit the EPR spectrum of the GS. radical adduct of DMPO (DMPO-.SG) without exogenous reduced glutathione (GSH). The identity of this radical adduct was confirmed by observing hyperfine coupling constants identical to previously reported values in in vitro studies, which utilized known enzymic reactions, such as horseradish peroxidase and Cu/Zn superoxide dismutase, with GSH and H2O2 as substrates. The formation of the GS. radicals required viable cells and continuous biosynthesis of GSH. No significant effect on the resonance amplitude by the addition of a membrane-impermeable paramagnetic broadening agent indicated that these radicals were located inside the intact cell. N-Acetyl-L-cysteine (NAC)-treated cells produced NAC-derived free radicals (NAC.) in place of GS. radicals. The time course studies showed that DMPO-.SG formation exhibited a large increase in its concentration after a lag period, whereas DMPO-NAC. formation from NAC-treated cells did not show this sudden increase. These results were discussed in terms of the limit of antioxidant enzyme defenses in cells and the potential role of the GS. radical burst in activation of the transcription nuclear factor NF-kappa B in response to oxidative stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nature of an L-arginine-derived relaxing factor released from vascular smooth muscle cells cultured on microcarrier beads and stimulated for 20 h with interleukin 1 beta was investigated. Unlike the unstable relaxation elicited by authentic nitric oxide (NO) in a cascade superfusion bioassay system, the effluate from vascular smooth muscle cells induced a stable relaxation that was susceptible to inhibition by oxyhemoglobin. Three putative endogenous NO carriers mimicked this stable relaxing effect: S-nitroso-L-cysteine, low molecular weight dinitrosyl-iron complexes (DNICs), and the adduct of NG-hydroxy-L-arginine (HOArg) with NO. Inactivation of S-nitroso-L-cysteine by Hg2+ ions or trapping of DNICs with agarose-bound bovine serum albumin abolished their relaxing effects, whereas that of the vascular smooth muscle cell effluate remained unaffected. In addition, neither S-nitrosothiols nor DNICs were detectable in the effluate from these cells, as judged by UV and electron spin resonance (ESR) spectroscopy. The HOArg-NO adduct was instantaneously generated upon reaction of HOArg with authentic NO under bioassay conditions. Its pharmacological profile was indistinguishable from that of the vascular smooth muscle cell effluate, as judged by comparative bioassay with different vascular and nonvascular smooth muscle preparations. Moreover, up to 100 nM HOArg was detected in the effluate from interleukin 1 beta-stimulated vascular smooth muscle cells, suggesting that sufficient amounts of HOArg are released from these cells to spontaneously generate the HOArg-NO adduct. This intercellular NO carrier probably accounts for the stable L-arginine-derived relaxing factor released from cytokine-stimulated vascular smooth muscle cells and also from other NO-producing cells, such as macrophages and neutrophils.