55 resultados para Transducer linearizer
Resumo:
The halobacterial phototaxis receptors sensory rhodopsin I and II (SRI, SRII) enable the bacteria to seek optimal light conditions for ion pumping by bacteriorhodopsin and/or halorhodopsin. The incoming signal is transferred across the plasma membrane by means of receptor-specific transducer proteins that bind tightly to their corresponding photoreceptors. To investigate the receptor/transducer interaction, advantage is taken of the observation that both SRI and SRII can function as proton pumps. SRI from Halobacterium salinarum, which triggers the positive phototaxis, the photophobic receptor SRII from Natronobacterium pharaonis (pSRII), as well as the mutant pSRII-F86D were expressed in Xenopus oocytes. Voltage-clamp studies confirm that SRI and pSRII function as light-driven, outwardly directed proton pumps with a much stronger voltage dependence than the ion pumps bacteriorhodopsin and halorhodopsin. Coexpression of SRI and pSRII-F86D with their corresponding transducers suppresses the proton transport, revealing a tight binding and specific interaction of the two proteins. These latter results may be exploited to further analyze the binding interaction of the photoreceptors with their downstream effectors.
Resumo:
In response to IFN-γ, the latent cytoplasmic Stat1 (signal transducer and activator of transcription) proteins translocate into the nucleus and activate transcription. We showed previously that Stat1 recruits a group of nuclear proteins, among them MCM5 (minichromosome maintenance) and MCM3, for transcription activation. MCM5 directly interacts with the transcription activation domain (TAD) of Stat1 and enhances Stat1-mediated transcription activation. In this report, we identified two specific residues (R732, K734) in MCM5 that are required for the direct interaction between Stat1 and MCM5 both in vitro and in vivo. MCM5 containing mutations of R732/K734 did not enhance Stat1-mediated transcription activation in response to IFN-γ. In addition, it also failed to form complexes with other MCM proteins in vivo, suggesting that these two residues may be important for an interaction domain in MCM5. Furthermore, MCM5 bearing mutations in its ATPase and helicase domains did not enhance Stat1 activity. In vitro binding assays indicate that MCM3 does not interact directly with Stat1, suggesting that the presence of MCM3 in the group of Stat1TAD-interacting proteins is due to the association of MCM3 with MCM5. Finally, gel filtration analyses of nuclear extracts from INF-γ-treated cells demonstrate that there is a MCM5/3 subcomplex coeluting with Stat1. Together, these results strongly suggest that Stat1 recruits a MCM5/3 subcomplex through direct interaction with MCM5 in the process of IFN-γ-induced gene activation.
Resumo:
Interferon (IFN) treatment induces tyrosine phosphorylation and nuclear translocation of Stat1 (signal transducer and activator of transcription) to activate or repress transcription. We report here that a member of the protein inhibitor of activated STAT family, PIASy, is a transcriptional corepressor of Stat1. IFN treatment triggers the in vivo interaction of Stat1 with PIASy, which represses Stat1-mediated gene activation without blocking the DNA binding activity of Stat1. An LXXLL coregulator signature motif located near the NH2 terminus of PIASy, although not involved in the PIASy–Stat1 interaction, is required for the transrepression activity of PIASy. Our studies identify PIASy as a transcriptional corepressor of Stat1 and suggest that different PIAS proteins may repress STAT-mediated gene activation through distinct mechanisms.
Resumo:
Methyl jasmonate is a plant volatile that acts as an important cellular regulator mediating diverse developmental processes and defense responses. We have cloned the novel gene JMT encoding an S-adenosyl-l-methionine:jasmonic acid carboxyl methyltransferase (JMT) from Arabidopsis thaliana. Recombinant JMT protein expressed in Escherichia coli catalyzed the formation of methyl jasmonate from jasmonic acid with Km value of 38.5 μM. JMT RNA was not detected in young seedlings but was detected in rosettes, cauline leaves, and developing flowers. In addition, expression of the gene was induced both locally and systemically by wounding or methyl jasmonate treatment. This result suggests that JMT can perceive and respond to local and systemic signals generated by external stimuli, and that the signals may include methyl jasmonate itself. Transgenic Arabidopsis overexpressing JMT had a 3-fold elevated level of endogenous methyl jasmonate without altering jasmonic acid content. The transgenic plants exhibited constitutive expression of jasmonate-responsive genes, including VSP and PDF1.2. Furthermore, the transgenic plants showed enhanced level of resistance against the virulent fungus Botrytis cinerea. Thus, our data suggest that the jasmonic acid carboxyl methyltransferase is a key enzyme for jasmonate-regulated plant responses. Activation of JMT expression leads to production of methyl jasmonate that could act as an intracellular regulator, a diffusible intercellular signal transducer, and an airborne signal mediating intra- and interplant communications.
Resumo:
The Sma and Mad related (Smad) family proteins are critical mediators of the transforming growth factor-β (TGF-β) superfamily signaling. After TGF-β-mediated phosphorylation and association with Smad4, Smad2 moves to the nucleus and activates expression of specific genes through cooperative interactions with DNA-binding proteins, including members of the winged-helix family of transcription factors, forkhead activin signal transducer (FAST)-1 and FAST2. TGF-β has also been described to activate other signaling pathways, such as the c-Jun N-terminal Kinase (JNK) pathway. Here, we show that activation of JNK cascade blocked the ability of Smad2 to mediate TGF-β-dependent activation of the FAST proteins. This inhibitory activity is mediated through the transcriptional factor c-Jun, which enhances the association of Smad2 with the nuclear transcriptional corepressor TG-interacting factor (TGIF), thereby interfering with the assembly of Smad2 and the coactivator p300 in response to TGF-β signaling. Interestingly, c-Jun directly binds to the nuclear transcriptional corepressor TGIF and is required for TGIF-mediated repression of Smad2 transcriptional activity. These studies thus reveal a mechanism for suppression of Smad2 signaling pathway by JNK cascade through transcriptional repression.
Resumo:
As in other excitable cells, the ion channels of sensory receptors produce electrical signals that constitute the cellular response to stimulation. In photoreceptors, olfactory neurons, and some gustatory receptors, these channels essentially report the results of antecedent events in a cascade of chemical reactions. The mechanoelectrical transduction channels of hair cells, by contrast, are coupled directly to the stimulus. As a consequence, the mechanical properties of these channels shape our hearing process from the outset of transduction. Channel gating introduces nonlinearities prominent enough to be measured and even heard. Channels provide a feedback signal that controls the transducer's adaptation to large stimuli. Finally, transduction channels participate in an amplificatory process that sensitizes and sharpens hearing.
Resumo:
Signal transducer and activator of transcription (STAT) proteins perform key roles in mediating signaling by cytokines and growth factors, including platelet-derived growth factor (PDGF). In addition, Src family kinases activate STAT signaling and are required for PDGF-induced mitogenesis in normal cells. One STAT family member, Stat3, has been shown to have an essential role in cell transformation by the Src oncoprotein. However, the mechanisms by which STAT-signaling pathways contribute to mitogenesis and transformation are not fully defined. We show here that disruption of Stat3 signaling by using dominant-negative Stat3β protein in NIH 3T3 fibroblasts suppresses c-Myc expression concomitant with inhibition of v-Src-induced transformation. Ectopic expression of c-Myc is able to partially reverse this inhibition, suggesting that c-Myc is a downstream effector of Stat3 signaling in v-Src transformation. Furthermore, c-myc gene knockout fibroblasts are refractory to transformation by v-Src, consistent with a requirement for c-Myc protein in v-Src transformation. In normal NIH 3T3 cells, disruption of Stat3 signaling with dominant-negative Stat3β protein inhibits PDGF-induced mitogenesis in a manner that is reversed by ectopic c-Myc expression. Moreover, inhibition of Src family kinases with the pharmacologic agent, SU6656, blocks Stat3 activation by PDGF. These findings, combined together, delineate the signaling pathway, PDGF → Src → Stat3 → Myc, that is important in normal PDGF-induced mitogenesis and subverted in Src transformation.
Resumo:
High fluence-rate blue light (BL) rapidly inhibits hypocotyl growth in Arabidopsis, as in other species, after a lag time of 30 s. This growth inhibition is always preceded by the activation of anion channels. The membrane depolarization that results from the activation of anion channels by BL was only 30% of the wild-type magnitude in hy4, a mutant lacking the HY4 BL receptor. High-resolution measurements of growth made with a computer-linked displacement transducer or digitized images revealed that BL caused a rapid inhibition of growth in wild-type and hy4 seedlings. This inhibition persisted in wild-type seedlings during more than 40 h of continuous BL. By contrast, hy4 escaped from the initial inhibition after approximately 1 h of BL and grew faster than wild type for approximately 30 h. Wild-type seedlings treated with 5-nitro-2-(3-phenylpropylamino)-benzoic acid, a potent blocker of the BL-activated anion channel, displayed rapid growth inhibition, but, similar to hy4, these seedlings escaped from inhibition after approximately 1 h of BL and phenocopied the mutant for at least 2.5 h. The effects of 5-nitro-2-(3-phenylpropylamino)-benzoic acid and the HY4 mutation were not additive. Taken together, the results indicate that BL acts through HY4 to activate anion channels at the plasma membrane, causing growth inhibition that begins after approximately 1 h. Neither HY4 nor anion channels appear to participate greatly in the initial phase of inhibition.
Resumo:
The human inducible nitric oxide synthase (hiNOS) gene is expressed in several disease states and is also important in the normal immune response. Previously, we described a cytokine-responsive enhancer between −5.2 and −6.1 kb in the 5′-flanking hiNOS promoter DNA, which contains multiple nuclear factor κβ (NF-κB) elements. Here, we describe the role of the IFN-Jak kinase-Stat (signal transducer and activator of transcription) 1 pathway for regulation of hiNOS gene transcription. In A549 human lung epithelial cells, a combination of cytokines tumor necrosis factor-α, interleukin-1β, and IFN-γ (TNF-α, IL-1β, and IFN-γ) function synergistically for induction of hiNOS transcription. Pharmacological inhibitors of Jak2 kinase inhibit cytokine-induced Stat 1 DNA-binding and hiNOS gene expression. Expression of a dominant-negative mutant Stat 1 inhibits cytokine-induced hiNOS reporter expression. Site-directed mutagenesis of a cis-acting DNA element at −5.8 kb in the hiNOS promoter identifies a bifunctional NF-κB/Stat 1 motif. In contrast, gel shift assays indicate that only Stat 1 binds to the DNA element at −5.2 kb in the hiNOS promoter. Interestingly, Stat 1 is repressive to basal and stimulated iNOS mRNA expression in 2fTGH human fibroblasts, which are refractory to iNOS induction. Overexpression of NF-κB activates hiNOS promoter–reporter expression in Stat 1 mutant fibroblasts, but not in the wild type, suggesting that Stat 1 inhibits NF-κB function in these cells. These results indicate that both Stat 1 and NF-κB are important in the regulation of hiNOS transcription by cytokines in a complex and cell type-specific manner.
Resumo:
Leukemia inhibitory factor (LIF) expression in the uterus is essential for embryo implantation in mice. Here we describe the spatial and temporal regulation of LIF signaling in vivo by using tissues isolated from uteri on different days over the implantation period. During this time, LIF receptors are expressed predominantly in the luminal epithelium (LE) of the uterus. Isolated epithelium responds to LIF by phosphorylation and nuclear translocation of signal transducer and activator of transcription (Stat) 3, but not by an increase in mitogen-activated protein kinase levels. The related cytokines Il-6, ciliary neurotrophic factor, as well as epidermal growth factor, do not activate Stat3, although epidermal growth factor stimulates mitogen-activated protein kinase. In vivo Stat3 activation is induced by LIF alone, resulting in the localization of Stat3 specifically to the nuclei of the LE coinciding with the onset of uterine receptivity. The responsiveness of the LE to LIF is regulated temporally, with Stat activation being restricted to day 4 of pregnancy despite the presence of constant levels of LIF receptor throughout the preimplantation period. Uterine receptivity is therefore under dual control and is regulated by both the onset of LIF expression in the endometrial glands and the release from inhibition of receptor function in the LE.
Prostaglandins are required for CREB activation and cellular proliferation during liver regeneration
Resumo:
The liver responds to multiple types of injury with an extraordinarily well orchestrated and tightly regulated form of regeneration. The response to partial hepatectomy has been used as a model system to elucidate the molecular basis of this regenerative response. In this study, we used cyclooxygenase (COX)-selective antagonists and -null mice to determine the role of prostaglandin signaling in the response of liver to partial hepatectomy. The results show that liver regeneration is markedly impaired when both COX-1 and COX-2 are inhibited by indocin or by a combination of the COX-1 selective antagonist, SC-560, and the COX-2 selective antagonist, SC-236. Inhibition of COX-2 alone partially inhibits regeneration whereas inhibition of COX-1 alone tends to delay regeneration. Neither the rise in IL-6 nor the activation of signal transducer and activator of transcription-3 (STAT3) that is seen during liver regeneration is inhibited by indocin or the selective COX antagonists. In contrast, indocin treatment prevents the activation of CREB by phosphorylation that occurs during hepatic regeneration. These data indicate that prostaglandin signaling is required during liver regeneration, that COX-2 plays a particularly important role but COX-1 is also involved, and implicate the activation of CREB rather than STAT3 as the mediator of prostaglandin signaling during liver regeneration.
Resumo:
Light-induced lipophilic porphyrin/aqueous acceptor charge separation across a single lipid-water interface can pump protons across the lipid bilayer when the hydrophobic weak acids, carbonylcyanide m-chlorophenylhydrazone and its p-trifluoromethoxyphenyl analogue, are present. These compounds act as proton carriers across lipid bilayers. In their symmetric presence across the bilayer, the positive currents and voltages produced by the photogeneration of porphyrin cations are replaced by larger negative currents and voltages. The maximum negative current and voltage occur at the pH of maximum dark conductance. The reversed larger current and voltage show a positive ionic charge transport in the same direction as the electron transfer. This transport can form an ion concentration gradient. The movement of protons is verified by an unusual D2O isotope effect that increases the negative ionic current by 2- to 3-fold. These effects suggest that an interfacial pK shift of the weak acid caused by the local electric field of photoformed porphyrin cations/acceptor anions functions as the driving force. The estimated pumping efficiency is 10-30%. Time-resolved results show that proton pumping across the bilayer occurs on the millisecond time scale, similar to that of biological pumps. This light-driven proteinless pump offers a simple model for a prebiological energy transducer.
Resumo:
Signals emanating from CD40 play crucial roles in B-cell function. To identify molecules that transduce CD40 signalings, we have used the yeast two-hybrid system to done cDNAs encoding proteins that bind the cytoplasmic tail of CD40. A cDNA encoding a putative signal transducer protein, designated TRAF5, has been molecularly cloned. TRAF5 has a tumor necrosis factor receptor-associated factor (TRAF) domain in its carboxyl terminus and is most homologous to TRAF3, also known as CRAF1, CD40bp, or LAP-1, a previously identified CD40-associated factor. The amino terminus has a RING finger domain, a cluster of zinc fingers and a coiled-coil domain, which are also present in other members of the TRAF family protein except for TRAF1. In vitro binding assays revealed that TRAF5 associates with the cytoplasmic tail of CD40, but not with the cytoplasmic tail of tumor receptor factor receptor type 2, which associates with TRAF2. Based on analysis of the association between TRAF5 and various CD40 mutants, residues 230-269 of CD40 are required for the association with TRAF5. In contrast to TRAF3, overexpression of TRAF5 activates transcription factor nuclear factor kappa B. Furthermore, amino-terminally truncated forms of TRAF5 suppress the CD40-mediated induction of CD23 expression, as is the case with TRAF3. These results suggest that TRAF5 and TRAF3 could be involved in both common and distinct signaling pathways emanating from CD40.
Resumo:
An important component of cytokine regulation of cell growth and differentiation is rapid transcriptional activation of genes by the JAK-STAT (signal transducer and activator of transcription) signaling pathway. Ligation of cytokine receptors results in tyrosine phosphorylation and activation of receptor-associated Jak protein tyrosine kinases and cytoplasmic STAT transcription factors, which then translocate to the nucleus. We describe the interruption of cytokine triggered JAK-STAT signals by cAMP, the calcium ionophore ionomycin, and granulocyte/macrophage colony-stimulating factor. Jak1 kinase activity, interleukin 6-induced gene activation, Stat3 tyrosine phosphorylation, and DNA-binding were inhibited, as was activation of Jak1 and Stat1 by interferon gamma. The kinetics and requirement for new RNA and protein synthesis for inhibition of interleukin 6 by ionomycin and GM-CSF differed, but both agents increased the association of Jak1 with protein tyrosine phosphatase ID (SH2-containing phosphatase 2). Our results demonstrate that crosstalk with distinct signaling pathways can inhibit JAK-STAT signal transduction, and suggest approaches for modulating cytokine activity during immune responses and inflammatory processes.
The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors.
Resumo:
The leptin receptor (OB-R) is a single membrane-spanning protein that mediates the weight regulatory effects of leptin (OB protein). The mutant allele (db) of the OB-R gene encodes a protein with a truncated cytoplasmic domain that is predicted to be functionally inactive. Several mRNA splice variants encoding OB-Rs with different length cytoplasmic domains have been detected in various tissues. Here we demonstrate that the full-length OB-R (predominantly expressed in the hypothalamus), but not a major naturally occurring truncated form or a mutant from found in db/db mice, can mediate activation of signal transducer and activator of transcription (STAT) proteins and stimulate transcription through interleukin 6 responsive gene elements. Reconstitution experiments suggest that, although OB-R mediates intracellular signals with a specificity similar to interleukin 6-type cytokine receptors, signaling appears to be independent of the gp130 signal transducing component of the interleukin 6-type cytokine receptors.