34 resultados para The Indian High Courts Act 1911, 1
Resumo:
The human immunodeficiency virus type 1 (HIV-1) matrix protein forms a structural shell associated with the inner viral membrane and performs other essential functions throughout the viral life cycle. The crystal structure of the HIV-1 matrix protein, determined at 2.3 angstrom resolution, reveals that individual matrix molecules are composed of five major helices capped by a three-stranded mixed beta-sheet. Unexpectedly, the protein assembles into a trimer in three different crystal lattices, burying 1880 angstrom2 of accessible surface area at the trimer interfaces. Trimerization appears to create a large, bipartite membrane binding surface in which exposed basic residues could cooperate with the N-terminal myristoyl groups to anchor the protein on the acidic inner membrane of the virus.
Resumo:
Elucidating the relevant genomic changes mediating development and evolution of prostate cancer is paramount for effective diagnosis and therapy. A putative dominant-acting nude mouse prostatic carcinoma tumor-inducing gene, PTI-1, has been cloned that is expressed in patient-derived human prostatic carcinomas but not in benign prostatic hypertrophy or normal prostate tissue. PTI-1 was detected by cotransfecting human prostate carcinoma DNA into CREF-Trans 6 cells, inducing tumors in nude mice, and isolating genes displaying increased expression in tumor-derived cells by using differential RNA display (DD). Screening a human prostatic carcinoma (LNCaP) cDNA library with a 214-bp DNA fragment found by DD permitted the cloning of a full-length 2.0-kb PTI-1 cDNA. Sequence analysis indicates that PTI-1 is a gene containing a 630-bp 5' sequence and a 3' sequence homologous to a truncated and mutated form of human elongation factor 1 alpha. In vitro translation demonstrates that the PTI-1 cDNA encodes a predominant approximately 46-kDa protein. Probing Northern blots with a DNA fragment corresponding to the 5' region of PTI-1 identifies multiple PTI-1 transcripts in RNAs from human carcinoma cell lines derived from the prostate, lung, breast, and colon. In contrast, PTI-1 RNA is not detected in human melanoma, neuroblastoma, osteosarcoma, normal cerebellum, or glioblastoma multiforme cell lines. By using a pair of primers recognizing a 280-bp region within the 630-bp 5' PTI-1 sequence, reverse transcription-PCR detects PTI-1 expression in patient-derived prostate carcinomas but not in normal prostate or benign hypertrophic prostate tissue. In contrast, reverse transcription-PCR detects prostate-specific antigen expression in all of the prostate tissues. These results indicate that PTI-1 may be a member of a class of oncogenes that could affect protein translation and contribute to carcinoma development in human prostate and other tissues. The approaches used, rapid expression cloning with the CREF-Trans 6 system and the DD strategy, should prove widely applicable for identifying and cloning additional human oncogenes.
Resumo:
The maize floury 2 (fl2) mutation enhances the lysine content of the grain, but the soft texture of the endosperm makes it unsuitable for commercial production. The mutant phenotype is linked with the appearance of a 24-kDa alpha-zein protein and increased synthesis of binding protein, both of which are associated with irregularly shaped protein bodies. We have cloned the gene encoding the 24-kDa protein and show that it is expressed as a 22-kDa alpha-zein with an uncleaved signal peptide. Comparison of the deduced N-terminal amino acid sequence of the 24-kDa alpha-zein protein with other alpha-zeins revealed an alanine to valine substitution at the C-terminal position of the signal peptide, a histidine insertion within the seventh alpha-helical repeat, and an alanine to threonine substitution with the same alpha-helical repeat of the protein. Structural defects associated with this alpha-zein explain many of the phenotypic effects of the fl2 mutation.
Resumo:
To determine whether T-cell-receptor (TCR) usage by T cells recognizing a defined human tumor antigen in the context of the same HLA molecule is conserved, we analyzed the TCR diversity of autologous HLA-A2-restricted cytotoxic T-lymphocyte (CTL) clones derived from five patients with metastatic melanoma and specific for the common melanoma antigen Melan-A/MART-1. These clones were first identified among HLA-A2-restricted anti-melanoma CTL clones by their ability to specifically release tumor necrosis factor in response to HLA-A2.1+ COS-7 cells expressing this tumor antigen. A PCR with variable (V)-region gene subfamily-specific primers was performed on cDNA from each clone followed by DNA sequencing. TCRAV2S1 was the predominant alpha-chain V region, being transcribed in 6 out of 9 Melan-A/MART-1-specific CTL clones obtained from the five patients. beta-chain V-region usage was also restricted, with either TCRBV14 or TCRBV7 expressed by all but one clone. In addition, a conserved TCRAV2S1/TCRBV14 combination was expressed in four CTL clones from three patients. None of these V-region genes was found in a group of four HLA-A2-restricted CTL clones recognizing different antigens (e.g., tyrosinase) on the autologous tumor. TCR joining regions were heterogeneous, although conserved structural features were observed in the complementarity-determining region 3 sequences. These results indicate that a selective repertoire of TCR genes is used in anti-melanoma responses when the response is narrowed to major histocompatibility complex-restricted antigen-specific interactions.