45 resultados para Southern blot
Resumo:
Oxytocin, a neurohypophyseal hormone, has been traditionally considered essential for mammalian reproduction. In addition to uterine contractions during labor and milk ejection during nursing, oxytocin has been implicated in anterior pituitary function, paracrine effects in the testis and ovary and the neural control of maternal and sexual behaviors. To determine the essential role(s) of oxytocin in mammalian reproductive function, mice deficient in oxytocin have been generated using embryonic stem cell technology. A deletion of exon 1 encoding the oxytocin peptide was generated in embryonic stem cells at a high frequency and was successfully transmitted in the germ line. Southern blot analysis of genomic DNA from homozygote offspring and in situ hybridization with an exonic probe 3' of the deletion failed to detect any oxytocin or neurophysin sequences, respectively, confirming that the mutation was a null mutation. Mice lacking oxytocin are both viable and fertile. Males do not have any reproductive behavioral or functional defects in the absence of oxytocin. Similarly, females lacking oxytocin have no obvious deficits in fertility or reproduction, including gestation and parturition. However, although oxytocin-deficient females demonstrate normal maternal behavior, all offspring die shortly after birth because of the dam's inability to nurse. Postpartum injections of oxytocin to the oxytocin deficient mothers restore milk ejection and rescue the offspring. Thus, despite the multiple reproductive activities that have been attributed to oxytocin, oxytocin plays an essential role only in milk ejection in the mouse.
Resumo:
In previous studies we showed that 5 days of treatment with granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) mobilized murine repopulating cells to the peripheral blood (PB) and that these cells could be efficiently transduced with retroviral vectors. We also found that, 7-14 days after cytokine treatment, the repopulating ability of murine bone marrow (BM) increased 10-fold. In this study we examined the efficiency of gene transfer into cytokine-primed murine BM cells and extended our observations to a nonhuman primate autologous transplantation model. G-CSF/SCF-primed murine BM cells collected 7-14 days after cytokine treatment were equivalent to post-5-fluorouracil BM or G-CSF/SCF-mobilized PB cells as targets for retroviral gene transfer. In nonhuman primates, CD34-enriched PB cells collected after 5 days of G-CSF/SCF treatment and CD34-enriched BM cells collected 14 days later were superior targets for retroviral gene transfer. When a clinically approved supernatant infection protocol with low-titer vector preparations was used, monkeys had up to 5% of circulating cells containing the vector for up to a year after transplantation. This relatively high level of gene transfer was confirmed by Southern blot analysis. Engraftment after transplantation using primed BM cells was more rapid than that using steady-state bone marrow, and the fraction of BM cells saving the most primitive CD34+/CD38- or CD34+/CD38dim phenotype increased 3-fold. We conclude that cytokine priming with G-CSF/SCF may allow collection of increased numbers of primitive cells from both the PB and BM that have improved susceptibility to retroviral transduction, with many potential applications in hematopoietic stem cell-directed gene therapy.
Resumo:
We have transduced normal human keratinocytes with retroviral constructs expressing a bacterial beta-galactosidase (beta-gal) gene or a human interleukin-6 (hIL-6) cDNA under control of a long terminal repeat. Efficiency of gene transfer averaged approximately 50% and 95% of clonogenic keratinocytes for beta-gal and hIL-6, respectively. Both genes were stably integrated and expressed for more than 150 generations. Clonal analysis showed that both holoclones and their transient amplifying progeny expressed the transgene permanently. Southern blot analysis on isolated clones showed that many keratinocyte stem cells integrated multiple proviral copies in their genome and that the synthesis of the exogenous gene product in vitro was proportional to the number of proviral integrations. When cohesive epidermal sheets prepared from stem cells transduced with hIL-6 were grafted on athymic animals, the serum levels of hIL-6 were strictly proportional to the rate of secretion in vitro and therefore to the number of proviral integrations. The possibility of specifying the level of transgene expression and its permanence in a homogeneous clone of stem cell origin opens new perspectives in the long-term treatment of genetic disorders.
Resumo:
Previously, we reported that a 61-bp subgenomic HBV DNA sequence (designated as 15AB, nt 1855-1915) is a hot spot for genomic recombination and that a cellular protein binding to 15AB may be the putative recombinogenic protein. In the present study, we established the existence of a 15AB-like sequence in human and rat chromosomal DNA by Southern blot analysis. The 15AB-like sequence isolated from the rat chromosome demonstrated a 80.9% identity with 5'-CCAAGCTGTGCCTTGGGTGGC-3', at 1872-1892 of the hepatitis B virus genome, thought to be the essential region for recombination. Interestingly, this 15AB-like sequence also contained the pentanucleotide motifs GCTGG and CCAGC as an inverted repeat, part of the chi known hot spot for recombination in Escherichia coli. Importantly, a portion of the 15AB-like sequence is homologous (82.1%, 23/28 bp) to break point clusters of the human promyelocytic leukemia (PML) gene, characterized by a translocation [t(15;17)], and to rearranged mouse DNA for the immunoglobulin kappa light chain. Moreover, 15AB and 15AB-like sequences have striking homologies (12/15 = 80.0% and 13/15 = 86.7%, respectively) to the consensus sequence for topoisomerase II. Our present results suggest that this 15AB-like sequence in the rat genome might be a recombinogenic candidate triggering genomic instability in carcinogenesis.
Resumo:
Iron is an essential nutrient for virtually all organisms. The IRT1 (iron-regulated transporter) gene of the plant Arabidopsis thaliana, encoding a probable Fe(II) transporter, was cloned by functional expression in a yeast strain defective for iron uptake. Yeast expressing IRT1 possess a novel Fe(II) uptake activity that is strongly inhibited by Cd. IRT1 is predicted to be an integral membrane protein with a metal-binding domain. Data base comparisons and Southern blot analysis indicated that IRT1 is a member of a gene family in Arabidopsis. Related sequences were also found in the genomes of rice, yeast, nematodes, and humans. In Arabidopsis, IRT1 is expressed in roots, is induced by iron deficiency, and has altered regulation in plant lines bearing mutations that affect the iron uptake system. These results provide the first molecular insight into iron transport by plants.
Resumo:
The jaagsiekte sheep retrovirus (JSRV), which appears to be a type B/D retrovirus chimera, has been incriminated as the cause of ovine pulmonary carcinoma. Recent studies suggest that the sequences related to this virus are found in the genomes of normal sheep and goats. To learn whether there are breeds of sheep that lack the endogenous viral sequences and to study their distribution among other groups of mammals, we surveyed several domestic sheep and goat breeds, other ungulates, and various mammal groups for sequences related to JSRV. Probes prepared from the envelope (SU) region of JSRV and the capsid (CA) region of a Peruvian type D virus related to JSRV were used in Southern blot hybridization with genomic DNA followed by low- and high-stringency washes. Fifteen to 20 CA and SU bands were found in all members of the 13 breeds of domestic sheep and 6 breeds of goats tested. There were similar findings in 6 wild Ovis and Capra genera. Within 22 other genera of Bovidae including domestic cattle, and 7 other families of Artiodactyla including Cervidae, there were usually a few CA or SU bands at low stringency and rare bands at high stringency. Among 16 phylogenetically distant genera, there were generally fewer bands hybridizing with either probe. These results reveal wide-spread phylogenetic distribution of endogenous type B and type D retroviral sequences related to JSRV among mammals and argue for further investigation of their potential role in disease.
Resumo:
A pantropic pseudotyped retroviral vector containing the envelope protein of vesicular stomatitis virus was used as a gene transfer vector in the dwarf surfclam, Mulinia lateralis. These pantropic retroviral vectors have an extremely broad host cell range and can infect many nonmammalian species. Newly fertilized dwarf surfclam eggs were electroporated at 700 V in the presence of 1 x 10(4) colony-forming units of pantropic pseudotyped retroviral particles. Infection was well tolerated and did not affect the survival rate of the embryos. Gametes collected from P1 presumptive transgenic animals were analyzed for the presence of provirus by PCR, and in different experiments 13-33% of the gamete pools were positive for the transgene. Dot blot hybridization of DNA samples from the F1 offspring of two different crosses between infected P1 and wild-type individuals revealed that 28% and 31% of F1 offspring were transgenic, respectively. Southern blot analysis of DNA isolated from PCR-positive F1 animals confirmed integration of a single copy of the provirus into the host genome. Thus, the germ lines of these two P1 transgenic animals were mosaic for the transgene. Expression of beta-galactosidase encoded by the provirus was detected in transgenic but not control surfclam embryos. Pantropic pseudotyped retroviral vectors provide a useful method for the stable introduction of foreign genetic information into surfclams and may facilitate the introduction of desirable genetic traits into commercially important shellfish and crustaceans.
Resumo:
Alternative RNA polymerase sigma factors are a common means of coordinating gene regulation in bacteria. Using PCR amplification with degenerate primers, we identified and cloned a sigma factor gene, sigF, from Mycobacterium tuberculosis. The deduced protein encoded by sigF shows significant similarity to SigF sporulation sigma factors from Streptomyces coelicolor and Bacillus subtilis and to SigB, a stress-response sigma factor, from B. subtilis. Southern blot surveys with a sigF-specific probe identified cross-hybridizing bands in other slow-growing mycobacteria, Mycobacterium bovis bacille Calmette-Guérin (BCG) and Mycobacterium avium, but not in the rapid-growers Mycobacterium smegmatis or Mycobacterium abscessus. RNase protection assays revealed that M. tuberculosis sigF mRNA is not present during exponential-phase growth in M. bovis BCG cultures but is strongly induced during stationary phase, nitrogen depletion, and cold shock. Weak expression of M. tuberculosis sigF was also detected during late-exponential phase, oxidative stress, anaerobiasis, and alcohol shock. The specific expression of M. tuberculosis sigF during stress or stationary phase suggests that it may play a role in the ability of tubercle bacilli to adapt to host defenses and persist during human infection.
Resumo:
pS2 is a member of the trefoil peptide family, all of which are overexpressed at sites of gastrointestinal injury. We hypothesized that they are important in stimulating mucosal repair. To test this idea, we have produced a transgenic mice strain that expresses human pS2 (hpS2) specifically within the jejunum and examined the effect of this overexpression on proliferation and susceptibility to indomethacin-induced damage. A transgenic mouse was produced by microinjecting fertilized oocytes with a 1.7-kb construct consisting of rat intestinal fatty acid binding protein promoter (positions -1178 to +28) linked to full-length (490 bp) hpS2 cDNA. Screening for positive animals was by Southern blot analysis. Distribution of hpS2 expression was determined by using Northern and Western blot analyses and immunohistochemical staining. Proliferation of the intestinal mucosa was determined by assessing the crypt cell production rate. Differences in susceptibility to intestinal damage were analyzed in animals that had received indomethacin (85 mg/kg s.c.) 0-30 h previously. Expression of hpS2 was limited to the enterocytes of the villi within the jejunum. In the nondamaged intestine, villus height and crypt cell production rate were similar in transgenic and negative (control) litter mates. However, there was a marked difference in the amount of damage caused by indomethacin in control and transgenic animals in the jejunum (30% reduction in villus height in controls vs. 12% reduction in transgenic animals, P < 0.01) but the damage sustained in the non-hpS2-expressing ileal region was similar in control and transgenic animals. These studies support the hypothesis that trefoil peptides are important in stimulating gastrointestinal repair.
Resumo:
Vitronectin (VN) is an abundant glycoprotein present in plasma and the extracellular matrix of most tissues. Though the precise function of VN in vivo is unknown, it has been implicated as a participant in diverse biological processes, including cell attachment and spreading, complement activation, and regulation of hemostasis. The major site of synthesis appears to be the liver, though VN is also found in the brain at an early stage of mouse organogenesis, suggesting that it may play an important role in mouse development. Genetic deficiency of VN has not been reported in humans or in other higher organisms. To examine the biologic function of VN within the context of the intact animal, we have established a murine model for VN deficiency through targeted disruption of the murine VN gene. Southern blot analysis of DNA obtained from homozygous null mice demonstrates deletion of all VN coding sequences, and immunological analysis confirms the complete absence of VN protein expression in plasma. However, heterozygous mice carrying one normal and one null VN allele and homozygous null mice completely deficient in VN demonstrate normal development, fertility, and survival. Sera obtained from VN-deficient mice are completely deficient in "serum spreading factor" and plasminogen activator inhibitor 1 binding activities. These observations demonstrate that VN is not essential for cell adhesion and migration during normal mouse development and suggest that its role in these processes may partially overlap with other adhesive matrix components.
Resumo:
A nervous system-specific glycoprotein antigen from adult Drosophila heads, designated Nervana (Nrv), has been purified on the basis of reactivity of its carbohydrate epitope(s) with anti-horseradish peroxidase (HRP) antibodies that are specific markers for Drosophila neurons. Anti-Nrv monoclonal antibodies (mAbs), specific for the protein moiety of Nrv, were used to screen a Drosophila embryo cDNA expression library. Three cDNA clones (designated Nrv1, Nrv2.1, and Nrv2.2) were isolated that code for proteins recognized by anti-Nrv mAbs on Western blots. DNA sequencing and Southern blot analyses established that the cDNA clones are derived from two different genes. In situ hybridization to Drosophila polytene chromosomes showed that the cDNA clones map to the third chromosome near 92C-D. Nrv1 and Nrv2.1/2.2 have open reading frames of 309 and 322/323 amino acids, respectively, and they are 43.4% identical at the amino acid level. The proteins deduced from these clones exhibit significant homology in both primary sequence and predicted topology to the beta subunit of Na+,K(+)-ATPase. Immunoaffinity-purified Nrv is associated with a protein (M(r) 100,000) recognized on Western blots by anti-ATPase alpha-subunit mAb. Our results suggest that the Drosophila nervous system-specific antigens Nrv1 and -2 are neuronal forms of the beta subunit of Na+,K(+)-ATPase.
Resumo:
Insertion of foreign DNA into an established mammalian genome can extensively alter the patterns of cellular DNA methylation. Adenovirus type 12 (Ad12)-transformed hamster cells, Ad12-induced hamster tumor cells, or hamster cells carrying integrated DNA of bacteriophage lambda were used as model systems. DNA methylation levels were examined by cleaving cellular DNA with Hpa II, Msp I, or Hha I, followed by Southern blot hybridization with 32P-labeled, randomly selected cellular DNA probes. For several, but not all, cellular DNA segments investigated, extensive increases in DNA methylation were found in comparison with the methylation patterns in BHK21 or primary Syrian hamster cells. In eight different Ad12-induced hamster tumors, moderate increases in DNA methylation were seen. Increased methylation of cellular genes was also documented in two hamster cell lines with integrated Ad12 DNA without the Ad12-transformed phenotype, in one cloned BHK21 cell line with integrated plasmid DNA, and in at least three cloned BHK21 cell lines with integrated lambda DNA. By fluorescent in situ hybridization, the cellular hybridization probes were located to different hamster chromosomes. The endogenous intracisternal A particle genomes showed a striking distribution on many hamster chromosomes, frequently on their short arms. When BHK21 hamster cells were abortively infected with Ad12, increases in cellular DNA methylation were not seen. Thus, Ad12 early gene products were not directly involved in increasing cellular DNA methylation. We attribute the alterations in cellular DNA methylation, at least in part, to the insertion of foreign DNA. Can alterations in the methylation profiles of hamster cellular DNA contribute to the generation of the oncogenic phenotype?
Resumo:
Calcium, a universal second messenger, regulates diverse cellular processes in eukaryotes. Ca2+ and Ca2+/calmodulin-regulated protein phosphorylation play a pivotal role in amplifying and diversifying the action of Ca(2+)-binding domain was cloned and characterized from lily. The cDNA clone contains an open reading frame coding for a protein of 520 amino acids. The predicted structure of CCaMK contains a catalytic domain followed by two regulatory domains, a calmodulin-binding domain and a visinin-like Ca(2+)-binding domain. The amino-terminal region of CCaMK contains all 11 conserved subdomains characteristic of serine/threonine protein kinases. The calmodulin-binding region of CCaMK has high homology (79%) to alpha subunit of mammalian Ca2+/calmodulin-dependent protein kinase. The calmodulin-binding region is fused to a neural visinin-like domain that contains three Ca(2+)-binding EF-hand motifs and a biotin-binding site. The Escherichia coli-expressed protein (approximately 56 kDa) binds calmodulin in a Ca(2+)-dependent manner. Furthermore, 45Ca-binding assays revealed that CCaMK directly binds Ca2+. The CCaMK gene is preferentially expressed in developing anthers. Southern blot analysis revealed that CCaMK is encoded by a single gene. The structural features of the gene suggest that it has multiple regulatory controls and could play a unique role in Ca2+ signaling in plants.
Resumo:
Neuroblastoma (NB), a tumor arising from the sympathetic nervous system, is one of the most common malignancies in childhood. Several recent reports on the p53 genotype found virtually exclusive wild-type status in primary tumors, and it was postulated that p53 plays no role in the development of NB. Here, however, we report that the vast majority of undifferentiated NBs exhibit abnormal cytoplasmic sequestration of wild-type p53. This inability of p53 to translocate to the nucleus presumably prevents the protein from functioning as a suppressor. Thirty of 31 cases (96%) of undifferentiated NB showed elevated levels of wild-type p53 in the cytoplasm of all tumor cells concomittant with a lack of nuclear staining. p53 immunoprecipitation from tumor tissues showed a 4.5- to 8-fold increase over normal protein levels. All of 10 tumors analyzed harbored wild-type p53 by direct sequencing of full-length cDNA and Southern blot. In addition, no MDM-2 gene amplification was seen in all 11 tumors analyzed. In contrast, no p53 abnormality was detected in 14 differentiated ganglioneuroblastomas and 1 benign ganglioneuroma. We conclude that loss of p53 function seems to play a major role in the tumorigenesis of undifferentiated NB. This tumor might abrogate the transactivating function of p53 by inhibiting its access to the nucleus, rather than by gene mutation. Importantly, our results suggest that (i) this could be a general mechanism for p53 inactivation not limited to breast cancer (where we first described it) and that (ii) it is found in a tumor previously not thought to be affected by p53 alteration.
Resumo:
Ceruloplasmin is an abundant alpha 2-serum glycoprotein that contains 95% of the copper found in the plasma of vertebrate species. We report here on the identification of a genetic defect in the ceruloplasmin gene in a patient previously noted to have a total absence of circulating serum ceruloplasmin in association with late-onset retinal and basal ganglia degeneration. In this patient T2 (transverse relaxation time)-weighted magnetic resonance imaging of the brain revealed basal ganglia densities consistent with iron deposition, and liver biopsy confirmed the presence of excess iron. Although Southern blot analysis of the patient's DNA was normal, PCR amplification of 18 of the 19 exons composing the human ceruloplasmin gene revealed a distinct size difference in exon 7. DNA sequence analysis of this exon revealed a 5-bp insertion at amino acid 410, resulting in a frame-shift mutation and a truncated open reading frame. The validity of this mutation was confirmed by analysis of DNA from the patient's daughter, which revealed heterozygosity for this same 5-bp insertion. The presence of this mutation in conjunction with the clinical and pathologic findings demonstrates an essential role for ceruloplasmin in human biology and identifies aceruloplasminemia as an autosomal recessive disorder of iron metabolism. These findings support previous studies that identified ceruloplasmin as a ferroxidase and are remarkably consistent with recent studies on the essential role of a homologous copper oxidase in iron metabolism in yeast. The clinical and laboratory findings suggest that additional patients with movement disorders and nonclassical Wilson disease should be examined for ceruloplasmin gene mutations.