32 resultados para Somatic Mutation and Recombination Test
Resumo:
Somatic mutation of the variable (V) regions of immunoglobulin genes occurs in vivo at rates that have been estimated to be between 10(-3) and 10(-4) per bp per generation. To study this process in vitro, the 18.81 pre-B-cell line and hybrids derived by fusing 18.81 to the NSO myeloma fusion partner were transfected with a mu heavy-chain construct containing a nonsense mutation in the V region (Vn) or the constant region (Cn). Mutation was quantitated by reversion analysis using the ELISA spot assay to detect single cells secreting IgM. Fluctuation analysis revealed that V-region mutations spontaneously occurred in 18.81 cells at an average rate of 5.8 x 10(-6) per bp per cell generation and in selected 18.81-NSO hybrids at greatly increased rates of 1.6 x 10(-3) to 5.8 x 10(-4) per bp per generation. The Vn construct also reverted frequently in transgenic mice, indicating that it contained sufficient information to mutate at high rates both in vivo and in vitro. Sequence analysis of reverted genes revealed that reversion was due to point mutations. Since the rates and nature of the mutations that are occurring in these transfected genes are similar to those reported in vivo, it should be possible to use this system to identify the cis-acting sequences and trans-acting factors that are responsible for V-region somatic hypermutation.
Resumo:
H1 histones bind to the linker DNA between nucleosome core particles and facilitate the folding of chromatin into a 30-nm fiber. Mice contain at least seven nonallelic subtypes of H1, including the somatic variants H1a through H1e, the testis-specific variant H1t, and the replacement linker histone H1(0). H1(0) accumulates in terminally differentiating cells from many lineages, at about the time when the cells cease dividing. To investigate the role of H1(0) in development, we have disrupted the single-copy H1(0) gene by homologous recombination in mouse embryonic stem cells. Mice homozygous for the mutation and completely lacking H1(0) mRNA and protein grew and reproduced normally and exhibited no anatomic or histologic abnormalities. Examination of tissues in which H1(0) is normally present at high levels also failed to reveal any abnormality in cell division patterns. Chromatin from H1(0)-deficient animals showed no significant change in the relative proportions of the other H1 subtypes or in the stoichiometry between linker histones and nucleosomes, suggesting that the other H1 histones can compensate for the deficiency in H1(0) by occupying sites that normally contain H1(0). Our results indicate that despite the unique properties and expression pattern of H1(0), its function is dispensable for normal mouse development.