47 resultados para Self-organization of States
Resumo:
A specific set of molecules including glutamate receptors is targeted to the postsynaptic specialization of excitatory synapses in the brain, gathering in a structure known as the postsynaptic density (PSD). Synaptic targeting of glutamate receptors depends on interactions between the C-terminal tails of receptor subunits and specific PDZ domain-containing scaffold proteins in the PSD. These scaffold proteins assemble a specialized protein complex around each class of glutamate receptor that functions in signal transduction, cytoskeletal anchoring, and trafficking of the receptors. Among the glutamate receptor subtypes, the N-methyl-d-aspartate receptor is relatively stably integrated in the PSD, whereas the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor moves in and out of the postsynaptic membrane in highly dynamic fashion. The distinctive cell biological behaviors of N-methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors can be explained by their differential interactions with cytoplasmic proteins.
Resumo:
Achnanthes longipes is a marine, biofouling diatom that adheres to surfaces via adhesive polymers extruded during motility or organized into structures called stalks that contain three distinct regions: the pad, shaft, and collar. Four monoclonal antibodies (AL.C1–AL.C4) and antibodies from two uncloned hybridomas (AL.E1 and AL.E2) were raised against the extracellular adhesives of A. longipes. Antibodies were screened against a hot-water-insoluble/hot-bicarbonate-soluble-fraction. The hot-water-insoluble/hot-bicarbonate-soluble fraction was fractionated to yield polymers in three size ranges: F1, ≥ 20,000,000 Mr; F2, ≅100,000 Mr; and F3, <10,000 Mr relative to dextran standards. The ≅100,000-Mr fraction consisted of highly sulfated (approximately 11%) fucoglucuronogalactans (FGGs) and low-sulfate (approximately 2%) FGGs, whereas F1 was composed of O-linked FGG (F2)-polypeptide (F3) complexes. AL.C1, AL.C2, AL.C4, AL.E1, and AL.E2 recognized carbohydrate complementary regions on FGGs, with antigenicity dependent on fucosyl-containing side chains. AL.C3 was unique in that it had a lower affinity for FGGs and did not label any portion of the shaft. Enzyme-linked immunosorbent assay and immunocytochemistry indicated that low-sulfate FGGs are expelled from pores surrounding the raphe terminus, creating the cylindrical outer layers of the shaft, and that highly sulfated FGGs are extruded from the raphe, forming the central core. Antibody-labeling patterns and other evidence indicated that the shaft central-core region is related to material exuded from the raphe during cell motility.
Modular organization of intrinsic connections associated with spectral tuning in cat auditory cortex
Resumo:
Many response properties in primary auditory cortex (AI) are segregated spatially and organized topographically as those in primary visual cortex. Intensive study has not revealed an intrinsic, anatomical organizing principle related to an AI functional topography. We used retrograde anatomic tracing and topographic physiologic mapping of acoustic response properties to reveal long-range (≥1.5 mm) convergent intrinsic horizontal connections between AI subregions with similar bandwidth and characteristic frequency selectivity. This suggests a modular organization for processing spectral bandwidth in AI.
Resumo:
We have used a novel site-specific protein-DNA photocrosslinking procedure to define the positions of polypeptide chains relative to promoter DNA in binary, ternary, and quaternary complexes containing human TATA-binding protein, human or yeast transcription factor IIA (TFIIA), human transcription factor IIB (TFIIB), and promoter DNA. The results indicate that TFIIA and TFIIB make more extensive interactions with promoter DNA than previously anticipated. TATA-binding protein, TFIIA, and TFIIB surround promoter DNA for two turns of DNA helix and thus may form a "cylindrical clamp" effectively topologically linked to promoter DNA. Our results have implications for the energetics, DNA-sequence-specificity, and pathway of assembly of eukaryotic transcription complexes.
Resumo:
The cis-regulatory systems that control developmental expression of two sea urchin genes have been subjected to detailed functional analysis. Both systems are modular in organization: specific, separable fragments of the cis-regulatory DNA each containing multiple transcription factor target sites execute particular regulatory subfunctions when associated with reporter genes and introduced into the embryo. The studies summarized here were carried out on the CyIIIa gene, expressed in the embryonic aboral ectoderm and on the Endo16 gene, expressed in the embryonic vegetal plate, archenteron, and then midgut. The regulatory systems of both genes include modules that control particular aspects of temporal and spatial expression, and in both the territorial boundaries of expression depend on a combination of negative and positive functions. In both genes different regulatory modules control early and late embryonic expression. Modular cis-regulatory organization is widespread in developmentally regulated genes, and we present a tabular summary that includes many examples from mouse and Drosophila. We regard cis-regulatory modules as units of developmental transcription control, and also of evolution, in the assembly of transcription control systems.
Resumo:
Microsatellites, tandem arrays of short (2-5 bp) nucleotide motifs, are present in high numbers in most eukaryotic genomes. We have characterized the physical distribution of microsatellites on chromosomes of sugar beet (Beta vulgaris L.). Each microsatellite sequence shows a characteristic genomic distribution and motif-dependent dispersion, with site-specific amplification on one to seven pairs of centromeres or intercalary chromosomal regions and weaker, dispersed hybridization along chromosomes. Exclusion of some microsatellites from 18S-5.8S-25S rRNA gene sites, centromeres, and intercalary sites was observed. In-gel and in situ hybridization patterns are correlated, with highly repeated restriction fragments indicating major centromeric sites of microsatellite arrays. The results have implications for genome evolution and the suitability of particular microsatellite markers for genetic mapping and genome analysis.
Resumo:
Predictions of earthquakes that are based on observations of precursory seismicity cannot depend on the average properties of the seismicity, such as the Gutenberg-Richter (G-R) distribution. Instead it must depend on the fluctuations in seismicity. We summarize the observational data of the fluctuations of seismicity in space, in time, and in a coupled space-time regime over the past 60 yr in Southern California, to provide a basis for determining whether these fluctuations are correlated with the times and locations of future strong earthquakes in an appropriate time- and space-scale. The simple extrapolation of the G-R distribution must lead to an overestimate of the risk due to large earthquakes. There may be two classes of earthquakes: the small earthquakes that satisfy the G-R law and the larger and large ones. Most observations of fluctuations of seismicity are of the rate of occurrence of smaller earthquakes. Large earthquakes are observed to be preceded by significant quiescence on the faults on which they occur and by an intensification of activity at distance. It is likely that the fluctuations are due to the nature of fractures on individual faults of the network of faults. There are significant inhomogeneities on these faults, which we assume will have an important influence on the nature of self-organization of seismicity. The principal source of the inhomogeneity on the large scale is the influence of geometry--i.e., of the nonplanarity of faults and the system of faults.
Resumo:
Although models of homogeneous faults develop seismicity that has a Gutenberg-Richter distribution, this is only a transient state that is followed by events that are strongly influenced by the nature of the boundaries. Models with geometrical inhomogeneities of fracture thresholds can limit the sizes of earthquakes but now favor the characteristic earthquake model for large earthquakes. The character of the seismicity is extremely sensitive to distributions of inhomogeneities, suggesting that statistical rules for large earthquakes in one region may not be applicable to large earthquakes in another region. Model simulations on simple networks of faults with inhomogeneities of threshold develop episodes of lacunarity on all members of the network. There is no validity to the popular assumption that the average rate of slip on individual faults is a constant. Intermediate term precursory activity such as local quiescence and increases in intermediate-magnitude activity at long range are simulated well by the assumption that strong weakening of faults by injection of fluids and weakening of asperities on inhomogeneous models of fault networks is the dominant process; the heat flow paradox, the orientation of the stress field, and the low average stress drop in some earthquakes are understood in terms of the asperity model of inhomogeneous faulting.
Resumo:
Plectin, a 500-kDa intermediate filament binding protein, has been proposed to provide mechanical strength to cells and tissues by acting as a cross-linking element of the cytoskeleton. To set the basis for future studies on gene regulation, tissue-specific expression, and pathological conditions involving this protein, we have cloned the human plectin gene, determined its coding sequence, and established its genomic organization. The coding sequence contains 32 exons that extend over 32 kb of the human genome. Most of the introns reside within a region encoding the globular N-terminal domain of the molecule, whereas the entire central rod domain and the entire C-terminal globular domain were found to be encoded by single exons of remarkable length, >3 kb and >6 kb, respectively. Overall, the organization of the human plectin gene was strikingly similar to that of human bullous pemphigoid antigen 1 (BPAG1), confirming that both proteins belong to the same gene family. Comparison of the deduced protein sequences for human and rat plectin revealed that they were 93% identical. By using fluorescence in situ hybridization, we have mapped the plectin gene to the long arm of chromosome 8 within the telomeric region. This gene locus (8q24) has previously been implicated in the human blistering skin disease epidermolysis bullosa simplex Ogna. Detailed knowledge of the structure of the plectin gene and its chromosome localization will aid in the elucidation of whether this or any other pathological conditions are linked to alterations in the plectin gene.
Resumo:
A DNA sequence, TPE1, representing the internal domain of a Ty1-copia retroelement, was isolated from genomic DNA of Pinus elliottii Engelm. var. elliottii (slash pine). Genomic Southern analysis showed that this sequence, carrying partial reverse transcriptase and integrase gene sequences, is highly amplified within the genome of slash pine and part of a dispersed element >4.8 kbp. Fluorescent in situ hybridization to metaphase chromosomes shows that the element is relatively uniformly dispersed over all 12 chromosome pairs and is highly abundant in the genome. It is largely excluded from centromeric regions and intercalary chromosomal sites representing the 18S-5.8S-25S rRNA genes. Southern hybridization with specific DNA probes for the reverse transcriptase gene shows that TPE1 represents a large subgroup of heterogeneous Ty1-copia retrotransposons in Pinus species. Because no TPE1 transcription could be detected, it is most likely an inactive element--at least in needle tissue. Further evidence for inactivity was found in recombinant reverse transcriptase and integrase sequences. The distribution of TPE1 within different gymnosperms that contain Ty1-copia group retrotransposons, as shown by a PCR assay, was investigated by Southern hybridization. The TPE1 family is highly amplified and conserved in all Pinus species analyzed, showing a similar genomic organization in the three- and five-needle pine species investigated. It is also present in spruce, bald cypress (swamp cypress), and in gingko but in fewer copies and a different genomic organization.
Resumo:
Cu(II) ions have been reacted with a 1/1 mixture of two linear ligands, one containing three 2,2'- bipyridine groups and the other three 2,2':6',2"-terpyridine groups. Absorption spectroscopy and fast atom bombardment mass spectrometry indicate the formation of a trinuclear complex containing one ligand of each kind. Determination of the crystal structure of this compound has confirmed that it is indeed a linear trinuclear complex in which two different ligands are wrapped in a helical fashion around the pentacoordinated metal ions. The central coordination geometry is trigonal bipyramidal; the two lateral Cu(II) ions are in a square pyramidal environment. Thus, a heteroduplex helicate is formed by the self-assembly of two different ligand strands and three specific metal ions induced by the coordination number and geometry of the latter. The self-assembly process may be considered to result from the reading of the steric and binding information present in the two ligands by Cu(II) ions through a pentacoordination algorithm. The same ligands have been shown earlier to yield homoduplex helicates from ions of tetrahedral and octahedral coordination geometry and strands of bidentate bipyridines and tridentate terpyridines, respectively. These two types of artificial double helical species may be related on one hand to the natural homoduplex nucleic acids and on the other hand to the DNA:RNA heteroduplex.
Resumo:
A major goal of experimental and clinical hematology is the identification of mechanisms and conditions that support the expansion of transplantable hematopoietic stem cells. In normal marrow, such cells appear to be identical to (or represent a subset of) a population referred to as long-term-culture-initiating cells (LTC-ICs) so-named because of their ability to produce colony-forming cell (CFC) progeny for > or = 5 weeks when cocultured with stromal fibroblasts. Some expansion of LTC-ICs in vitro has recently been described, but identification of the factors required and whether LTC-IC self-renewal divisions are involved have remained unresolved issues. To address these issues, we examined the maintenance and/or generation of LTC-ICs from single CD34+ CD38- cells cultured for variable periods under different culture conditions. Analysis of the progeny obtained from cultures containing a feeder layer of murine fibroblasts engineered to produce steel factor, interleukin (IL)-3, and granulocyte colony-stimulating factor showed that approximately 20% of the input LTC-ICs (representing approximately 2% of the original CD34+ CD38- cells) executed self-renewal divisions within a 6-week period. Incubation of the same CD34+ CD38- starting populations as single cells in a defined (serum free) liquid medium supplemented with Flt-3 ligand, steel factor, IL-3, IL-6, granulocyte colony-stimulating factor, and nerve growth factor resulted in the proliferation of initial cells to produce clones of from 4 to 1000 cells within 10 days, approximately 40% of which included > or = 1 LTC-IC. In contrast, in similar cultures containing methylcellulose, input LTC-ICs appeared to persist but not divide. Overall the LTC-IC expansion in the liquid cultures was 30-fold in the first 10 days and 50-fold by the end of another 1-3 weeks. Documentation of human LTC-IC self-renewal in vitro and identification of defined conditions that permit their extensive and rapid amplification should facilitate analysis of the molecular mechanisms underlying these processes and their exploitation for a variety of therapeutic applications.
Resumo:
Central to signaling by fibroblast growth factors (FGFs) is the oligomeric interaction of the growth factor and its high-affinity cell surface receptor, which is mediated by heparin-like polysaccharides. It has been proposed that the binding of heparin-like polysaccharides to FGF induces a conformational change in FGF, resulting in the formation of FGF dimers or oligomers, and this biologically active form is 'presented' to the FGF receptor for signal transduction. In this study, we show that monomeric basic FGF (FGF-2) preferentially self-associates and forms FGF-2 dimers and higher-order oligomers. As a consequence, FGF-2 monomers are oriented for binding to heparin-like polysaccharides. We also show that heparin-like polysaccharides can readily bind to self-associated FGF-2 without causing a conformational change in FGF-2 or disrupting the FGF-2 self-association, but that the bound polysaccharides only additionally stabilize the FGF-2 self-association. The preferential self-association corresponds to FGF-2 translations along two of the unit cell axes of the FGF-2 crystal structures. These two axes represent the two possible heparin binding directions, whereas the receptor binding sites are oriented along the third axis. Thus, we propose that preferential FGF-2 self-association, further stabilized by heparin, like "beads on a string," mediates FGF-2-induced receptor dimerization and activation. The observed FGF-2 self-association, modulated by heparin, not only provides a mechanism of growth factor activation but also represents a regulatory mechanism governing FGF-2 biological activity.
Resumo:
To gain insight into the regulation of expression of peroxisome proliferator-activated receptor (PPAR) isoforms, we have determined the structural organization of the mouse PPAR gamma (mPPAR gamma) gene. This gene extends > 105 kb and gives rise to two mRNAs (mPPAR gamma 1 and mPPAR gamma 2) that differ at their 5' ends. The mPPAR gamma 2 cDNA encodes an additional 30 amino acids N-terminal to the first ATG codon of mPPAR gamma 1 and reveals a different 5' untranslated sequence. We show that mPPAR gamma 1 mRNA is encoded by eight exons, whereas the mPPAR gamma 2 mRNA is encoded by seven exons. Most of the 5' untranslated sequence of mPPAR gamma 1 mRNA is encoded by two exons, whereas the 5' untranslated sequence and the extra 30 N-terminal amino acids of mPPAR gamma 2 are encoded by one exon, which is located between the second and third exons coding for mPPAR gamma 1. The last six exons of mPPAR gamma gene code for identical sequences in mPPAR gamma 1 and mPPAR gamma 2 isoforms. The mPPAR gamma 1 and mPPAR gamma 2 isoforms are transcribed from different promoters. The mPPAR gamma gene has been mapped to chromosome 6 E3-F1 by in situ hybridization using a biotin-labeled probe. These results establish that at least one of the PPAR genes yields more than one protein product, similar to that encountered with retinoid X receptor and retinoic acid receptor genes. The existence of multiple PPAR isoforms transcribed from different promoters could increase the diversity of ligand and tissue-specific transcriptional responses.
Resumo:
The visual stimuli that elicit neural activity differ for different retinal ganglion cells and these cells have been categorized by the visual information that they transmit. If specific visual information is conveyed exclusively or primarily by a particular set of ganglion cells, one might expect the cells to be organized spatially so that their sampling of information from the visual field is complete but not redundant. In other words, the laterally spreading dendrites of the ganglion cells should completely cover the retinal plane without gaps or significant overlap. The first evidence for this sort of arrangement, which has been called a tiling or tessellation, was for the two types of "alpha" ganglion cells in cat retina. Other reports of tiling by ganglion cells have been made subsequently. We have found evidence of a particularly rigorous tiling for the four types of ganglion cells in rabbit retina that convey information about the direction of retinal image motion (the ON-OFF direction-selective cells). Although individual cells in the four groups are morphologically indistinguishable, they are organized as four overlaid tilings, each tiling consisting of like-type cells that respond preferentially to a particular direction of retinal image motion. These observations lend support to the hypothesis that tiling is a general feature of the organization of information outflow from the retina and clearly implicate mechanisms for recognition of like-type cells and establishment of mutually acceptable territories during retinal development.