38 resultados para Retinal Bipolar Cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rd7 mouse, an animal model for hereditary retinal degeneration, has some characteristics similar to human flecked retinal disorders. Here we report the identification of a deletion in a photoreceptor-specific nuclear receptor (mPNR) mRNA that is responsible for hereditary retinal dysplasia and degeneration in the rd7 mouse. mPNR was isolated from a pool of photoreceptor-specific cDNAs originally created by subtractive hybridization of mRNAs from normal and photoreceptorless rd mouse retinas. Localization of the gene corresponding to mPNR to mouse Chr 9 near the rd7 locus made it a candidate for the site of the rd7 mutation. Northern analysis of total RNA isolated from rd7 mouse retinas revealed no detectable signal after hybridization with the mPNR cDNA probe. However, with reverse transcription–PCR, we were able to amplify different fragments of mPNR from rd7 retinal RNA and to sequence them directly. We found a 380-nt deletion in the coding region of the rd7 mPNR message that creates a frame shift and produces a premature stop codon. This deletion accounts for more than 32% of the normal protein and eliminates a portion of the DNA-binding domain. In addition, it may result in the rapid degradation of the rd7 mPNR message by the nonsense-mediated decay pathway, preventing the synthesis of the corresponding protein. Our findings demonstrate that mPNR expression is critical for the normal development and function of the photoreceptor cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three largest known populations of amacrine cells in the rabbit retina were stained with fluorescent probes in whole mounts and counted at a series of retinal eccentricities. The retinas were counterstained using a fluorescent DNA-binding molecule and the total number of nuclei in the inner nuclear layer were counted in confocal sections. From the total number of inner nuclear layer cells and the known fraction of them occupied by amacrine cells, the fraction of amacrine cells made up by the stained populations could be calculated. Starburst cells made up 3%, indoleamine-accumulating cells made up 4%, and AII cells made up 11% of all amacrine cells. By referring four smaller populations of amacrine cells to the number of indoleamine-accumulating cells, they were estimated to make up 4% of all amacrine cells. Thus, 78% of all amacrine cells in the rabbit’s retina are known only from isolated examples, if at all. This proportion is similar in the retinas of the mouse, cat, and monkey. It is likely that a substantial fraction of the local circuit neurons present in other regions of the central nervous system are also invisible as populations to current techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the current standard procedure for preparation of mammalian rhodopsin mutants, transfected COS-1 cells expressing the mutant opsin genes are treated with 5 μM 11-cis-retinal before detergent solubilization for purification. We found that binding of 11-cis-retinal to opsin mutants with single amino acid changes at Trp-265 (W265F,Y,A) and a retinitis pigmentosa mutant (A164V) was far from complete and required much higher concentrations of 11-cis-retinal. By isolation of the expressed opsins in a stable form, kinetic studies of retinal binding to the opsins in vitro have been carried out by using defined phospholipid–detergent mixtures. The results show wide variation in the rates of 11-cis-retinal binding. Thus, the in vitro reconstitution procedure serves as a probe of the retinal-binding pocket in the opsins. Further, a method is described for purification and characterization of the rhodopsin mutants after retinal binding to the opsins in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During retinogenesis, the Xenopus basic helix–loop–helix transcription factor Xath5 has been shown to promote a ganglion cell fate. In the developing mouse and chicken retinas, gene targeting and overexpression studies have demonstrated critical roles for the Brn3 POU domain transcription factor genes in the promotion of ganglion cell differentiation. However, the genetic relationship between Ath5 and Brn3 genes is unknown. To understand the genetic regulatory network(s) that controls retinal ganglion cell development, we analyzed the relationship between Ath5 and Brn3 genes by using a gain-of-function approach in the chicken embryo. We found that during retinogenesis, the chicken Ath5 gene (Cath5) is expressed in retinal progenitors and in differentiating ganglion cells but is absent in terminally differentiated ganglion cells. Forced expression of both Cath5 and the mouse Ath5 gene (Math5) in retinal progenitors activates the expression of cBrn3c following central-to-peripheral and temporal-to-nasal gradients. As a result, similar to the Xath5 protein, both Cath5 and Math5 proteins have the ability to promote the development of ganglion cells. Moreover, we found that forced expression of all three Brn3 genes also can stimulate the expression of cBrn3c. We further found that Ath5 and Brn3 proteins are capable of transactivating a Brn3b promoter. Thus, these data suggest that the expression of cBrn3c in the chicken and Brn3b in the mouse is initially activated by Ath5 factors in newly generated ganglion cells and later maintained by a feedback loop of Brn3 factors in the differentiated ganglion cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclic nucleotide-gated (CNG) channels are Ca(2+)-permeable, nonspecific cation channels that can be activated through direct interaction with cAMP and/or cGMP. Recent electrophysiological evidence for these channels in cultured hippocampal neurons prompted us to investigate the expression of CNG channel genes in hippocampus. PCR amplification detected the expression of transcripts for subunit 1 of both the rod photoreceptor (RCNGC1) and the olfactory receptor cell (OCNGC1) subtype of CNG channel in adult rat hippocampus. In situ hybridization detected expression of both channel subtypes in most principal neurons, including pyramidal cells of the CA1 through CA3 regions and granule cells of the dentate gyrus. From the hybridization patterns, we conclude that the two genes are colocalized in individual neurons. Comparison of the patterns of expression of type 1 cGMP-dependent protein kinase and the CNG channels suggests that hippocampal neurons can respond to changes in cGMP levels with both rapid changes in CNG channel activity and slower changes induced by phosphorylation. Future models of hippocampal function should include CNG channels and their effects on both electrical responses and intracellular Ca2+ levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major question in central nervous system development, including the neuroretina, is whether migrating cells express cues to find their way and settle at specific locations. We have transplanted quail neuroretinal cell lines QNR/D, a putative amacrine or ganglion cell, and QNR/K2, a putative Müller cell into chicken embryo eyes. Implanted QNR/D cells migrate only to the retinal ganglion and amacrine cell layers and project neurites in the plane of retina; in contrast, QNR/K2 cells migrate through the ganglion and amacrine layers, locate in the inner nuclear layer, and project processes across the retina. These data show that QNR/D and QNR/K2 cell lines represent distinct neural cell types, suggesting that migrating neural cells express distinct address cues. Furthermore, our results raise the possibility that immortalized cell lines can be used for replacement of specific cell types and for the transport of genes to given locations in neuroretina.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The visual world is presented to the brain through patterns of action potentials in the population of optic nerve fibers. Single-neuron recordings show that each retinal ganglion cell has a spatially restricted receptive field, a limited integration time, and a characteristic spectral sensitivity. Collectively, these response properties define the visual message conveyed by that neuron's action potentials. Since the size of the optic nerve is strictly constrained, one expects the retina to generate a highly efficient representation of the visual scene. By contrast, the receptive fields of nearby ganglion cells often overlap, suggesting great redundancy among the retinal output signals. Recent multineuron recordings may help resolve this paradox. They reveal concerted firing patterns among ganglion cells, in which small groups of nearby neurons fire synchronously with delays of only a few milliseconds. As there are many more such firing patterns than ganglion cells, such a distributed code might allow the retina to compress a large number of distinct visual messages into a small number of optic nerve fibers. This paper will review the evidence for a distributed coding scheme in the retinal output. The performance limits of such codes are analyzed with simple examples, illustrating that they allow a powerful trade-off between spatial and temporal resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the use of adenovirus-mediated gene transfer to reverse the pathologic changes of lysosomal storage disease caused by beta-glucuronidase deficiency in the eyes of mice with mucopolysaccharidosis VII. A recombinant adenovirus carrying the human beta-glucuronidase cDNA coding region under the control of a non-tissue-specific promoter was injected intravitreally or subretinally into the eyes of mice with mucopolysaccharidosis VII. At 1-3 weeks after injection, the treated and control eyes were examined histochemically for beta-glucuronidase expression and histologically for phenotypic correction of the lysosomal storage defect. Enzymatic expression was detected 1-3 weeks after injection. Storage vacuoles in the retinal pigment epithelium (RPE) were still present 1 week after gene transfer but were reduced to undetectable levels by 3 weeks in both intravitreally and subretinally injected eyes. There was minimal evidence of ocular pathology associated with the viral injection. These data indicate that adenovirus-mediated gene transfer to the eye may provide for adjunctive therapy for lysosomal storage diseases affecting the RPE in conjunction with enzyme replacement and/or gene therapies for correction of systemic disease manifestations. The data also support the view that recombinant adenovirus may be useful as a gene therapy vector for retinal degenerations that result from a primary genetic defect in the RPE cells.