150 resultados para Replication banding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a coupled helicase–polymerase DNA unwinding assay and have used it to monitor the rate of double-stranded DNA unwinding catalyzed by the phage T4 DNA replication helicase (gp41). This procedure can be used to follow helicase activity in subpopulations in systems in which the unwinding-synthesis reaction is not synchronized on all the substrate-template molecules. We show that T4 replication helicase (gp41) and polymerase (gp43) can be assembled onto a loading site located near the end of a long double-stranded DNA template in the presence of a macromolecular crowding agent, and that this coupled “two-protein” system can carry out ATP-dependent strand displacement DNA synthesis at physiological rates (400 to 500 bp per sec) and with high processivity in the absence of other T4 DNA replication proteins. These results suggest that a direct helicase–polymerase interaction may be central to fast and processive double-stranded DNA replication, and lead us to reconsider the roles of the other replication proteins in processivity control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An adenovirus type 5 mutant deleted for the preterminal protein (pTP) gene was constructed using cell lines that express pTP. The pTP deletion mutant virus is incapable of replicating in the absence of complementation and does not express detectable levels of viral mRNAs that are expressed only after the onset of replication. Accumulation of early-region mRNAs, including that for E1A, exhibits a lag relative to that observed from the wild-type virus. However, E1A mRNA accumulation attains a steady-state level similar to the level of expression during the early phase of infection with the wild-type virus. In 293-pTP cells (human embryonic kidney cells that express pTP in addition to high levels of adenovirus E1A and E1B proteins), the pTP deletion mutant virus replicates efficiently and yields infectious titers within 5-fold of that of the wild-type virus. The deletion of 1.2 kb of pTP-encoding sequence increases the size of foreign DNA that can be introduced into the virus and, with an absolute block to replication, makes this virus an important tool for gene therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Replication protein A (RPA) is a highly conserved single-stranded DNA-binding protein, required for cellular DNA replication, repair, and recombination. In human cells, RPA is phosphorylated during the S and G2 phases of the cell cycle and also in response to ionizing or ultraviolet radiation. Saccharomyces cerevisiae exhibits a similar pattern of cell cycle-regulated RPA phosphorylation, and our studies indicate that the radiation-induced reactions occur in yeast as well. We have examined yeast RPA phosphorylation during the normal cell cycle and in response to environmental insult, and have demonstrated that the checkpoint gene MEC1 is required for the reaction under all conditions tested. Through examination of several checkpoint mutants, we have placed RPA phosphorylation in a novel pathway of the DNA damage response. MEC1 is similar in sequence to human ATM, the gene mutated in patients with ataxia-telangiectasia (A-T). A-T cells are deficient in multiple checkpoint pathways and are hypersensitive to killing by ionizing radiation. Because A-T cells exhibit a delay in ionizing radiation-induced RPA phosphorylation, our results indicate a functional similarity between MEC1 and ATM, and suggest that RPA phosphorylation is involved in a conserved eukaryotic DNA damage-response pathway defective in A-T.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By examining the front of virus invasion in immature pea embryos infected with pea seed-borne mosaic virus (PSbMV), the selective control of different host genes has been observed. From our observations, the early responses to PSbMV replication can be grouped into three classes, inhibited host gene expression, induced host gene expression, and no effect on a normal host function. The expression of two heat-inducible genes encoding HSP70 and polyubiquitin was induced coordinately with the onset of virus replication and the down-regulation of two other genes encoding lipoxygenase and heat shock cognate protein. The down-regulation was part of a general suppression of host gene expression that may be achieved through the degradation of host transcripts. We discuss the possibilities of whether the induction of HSP70 and polyubiquitin genes represents a requirement for the respective protein products by the virus or is merely a consequence of the depletion of other host transcripts. The former is feasible, as the induction of both genes does result in increased HSP70 and ubiquitin accumulation. This also indicates that, in contrast to some animal virus infections, there is not a general inhibition of translation of host mRNAs following PSbMV infection. This selective control of host gene expression was observed in all cell types of the embryo and identifies mechanisms of cellular disruption that could act as triggers for symptom expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been demonstrated that CD8+ T cells produce a soluble factor(s) that suppresses human immunodeficiency virus (HIV) replication in CD4+ T cells. The role of soluble factors in the suppression of HIV replication in monocyte/macrophages (M/M) has not been fully delineated. To investigate whether a CD8+ T-cell-derived soluble factor(s) can also suppress HIV infection in the M/M system, primary macrophages were infected with the macrophage tropic HIV-1 strain Ba-L. CD8+ T-cell-depleted peripheral blood mononuclear cells were also infected with HIV-1 IIIB or Ba-L. HIV expression from the chronically infected macrophage cell line U1 was also determined in the presence of CD8+ T-cell supernatants or β-chemokines. We demonstrate that: (i) CD8+ T-cell supernatants did, but β-chemokines did not, suppress HIV replication in the M/M system; (ii) antibodies to regulated on activation normal T-cell expressed and Secreted (RANTES), macrophage inflammatory protein 1α (MIP-1α) and MIP-1β did not, whereas antibodies to interleukin 10, interleukin 13, interferon α, or interferon γ modestly reduced anti-HIV activity of the CD8+ T-cell supernatants; and (iii) the CD8+ T-cell supernatants did, but β-chemokines did not, suppress HIV-1 IIIB replication in peripheral blood mononuclear cells as well as HIV expression in U1 cells. These results suggest that HIV-suppressor activity of CD8+ T cells is a multifactorial phenomenon, and that RANTES, MIP-1α, and MIP-1β do not account for the entire scope of CD8+ T-cell-derived HIV-suppressor factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New antibiotics to combat the emerging pandemic of drug-resistant strains of Mycobacterium tuberculosis are urgently needed. We have investigated the effects on M. tuberculosis of phosphorothioate-modified antisense oligodeoxyribonucleotides (PS-ODNs) against the mRNA of glutamine synthetase, an enzyme whose export is associated with pathogenicity and with the formation of a poly-l-glutamate/glutamine cell wall structure. Treatment of virulent M. tuberculosis with 10 μM antisense PS-ODNs reduced glutamine synthetase activity and expression by 25–50% depending on whether one, two, or three different PS-ODNs were used and the PS-ODNs' specific target sites on the mRNA. Treatment with PS-ODNs of a recombinant strain of Mycobacterium smegmatis expressing M. tuberculosis glutamine synthetase selectively inhibited the recombinant enzyme but not the endogenous enzyme for which the mRNA transcript was mismatched by 2–4 nt. Treatment of M. tuberculosis with the antisense PS-ODNs also reduced the amount of poly-l-glutamate/glutamine in the cell wall by 24%. Finally, treatment with antisense PS-ODNs reduced M. tuberculosis growth by 0.7 logs (1 PS-ODN) to 1.25 logs (3 PS-ODNs) but had no effect on the growth of M. smegmatis, which does not export glutamine synthetase nor possess the poly-l-glutamate/glutamine (P-l-glx) cell wall structure. The experiments indicate that the antisense PS-ODNs enter the cytoplasm of M. tuberculosis and bind to their cognate targets. Although more potent ODN technology is needed, this study demonstrates the feasibility of using antisense ODNs in the antibiotic armamentarium against M. tuberculosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proliferating cell nuclear antigen (PCNA) is a processivity factor required for DNA polymerase δ (or ɛ)-catalyzed DNA synthesis. When loaded onto primed DNA templates by replication factor C (RFC), PCNA acts to tether the polymerase to DNA, resulting in processive DNA chain elongation. In this report, we describe the identification of two separate peptide regions of human PCNA spanning amino acids 36–55 and 196–215 that bind RFC by using the surface plasmon resonance technique. Site-directed mutagenesis of residues within these regions in human PCNA identified two specific sites that affected the biological activity of PCNA. Replacement of the aspartate 41 residue by an alanine, serine, or asparagine significantly impaired the ability of PCNA to (i) support the RFC/PCNA-dependent polymerase δ-catalyzed elongation of a singly primed DNA template; (ii) stimulate RFC-catalyzed DNA-dependent hydrolysis of ATP; (iii) be loaded onto DNA by RFC; and (iv) activate RFC-independent polymerase δ-catalyzed synthesis of poly dT. Introduction of an alanine at position 210 in place of an arginine also reduced the efficiency of PCNA in supporting RFC-dependent polymerase δ-catalyzed elongation of a singly primed DNA template. However, this mutation did not significantly alter the ability of PCNA to stimulate DNA polymerase δ in the absence of RFC but substantially lowered the efficiency of RFC-catalyzed reactions. These results are in keeping with a model in which surface exposed regions of PCNA interact with RFC and the subsequent loading of PCNA onto DNA orients the elongation complex in a manner essential for processive DNA synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interferon γ (IFN-γ) has pleiotropic biological effects, including intrinsic antiviral activity as well as stimulation and regulation of immune responses. An infectious recombinant human respiratory syncytial virus (rRSV/mIFN-γ) was constructed that encodes murine (m) IFN-γ as a separate gene inserted into the G-F intergenic region. Cultured cells infected with rRSV/mIFN-γ secreted 22 μg mIFN-γ per 106 cells. The replication of rRSV/mIFN-γ, but not that of a control chimeric rRSV containing the chloramphenicol acetyl transferase (CAT) gene as an additional gene, was 63- and 20-fold lower than that of wild-type (wt) RSV in the upper and lower respiratory tract, respectively, of mice. Thus, the attenuation of rRSV/mIFN-γ in vivo could be attributed to the activity of mIFN-γ and not to the presence of the additional gene per se. The mice were completely resistant to subsequent challenge with wt RSV. Despite its growth restriction, infection of mice with rRSV/mIFN-γ induced a level of RSV-specific antibodies that, on day 56, was comparable to or greater than that induced by infection with wt RSV. Mice infected with rRSV/mIFN-γ developed a high level of IFN-γ mRNA and an increased amount of interleukin 12 p40 mRNA in their lungs, whereas other cytokine mRNAs tested were unchanged compared with those induced by wt RSV. Because attenuation of RSV typically is accompanied by a reduction in immunogenicity, expression of IFN-γ by an rRSV represents a method of attenuation in which immunogenicity can be maintained rather than be reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have characterized HsCdc6, a human protein homologous to the budding yeast Cdc6p that is essential for DNA replication. We show that, unlike Cdc6p, the levels of HsCdc6 protein remain constant throughout the cell cycle in human cells. However, phosphorylation of HsCdc6 is regulated during the cell cycle. HsCdc6 is an excellent substrate for Cdk2 in vitro and is phosphorylated in vivo at three sites (Ser-54, Ser-74, and Ser-106) that are phosphorylated by Cdk2 in vitro, strongly suggesting that HsCdc6 is an in vivo Cdk substrate. HsCdc6 is nuclear in G1, but translocates to the cytoplasm at the start of S phase via Crm1-dependent export. An HsCdc6A1A2A3 mutant, which mimics unphosphorylated HsCdc6, is exclusively nuclear, and its expression inhibits initiation of DNA replication. An HsCdc6E1E2E3 mutant, which mimics phosphorylated HsCdc6, is exclusively cytoplasmic and is not associated with the chromatin/nuclear matrix fraction. Based on these results, we propose that phosphorylation of HsCdc6 by Cdks regulates DNA replication of at least two steps: first, by promoting initiation of DNA replication and, second, through nuclear exclusion preventing DNA rereplication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spo11 and the Rad50-Mre11 complex have been indirectly implicated in processes associated with DNA replication. These proteins also have been shown to have early meiotic roles essential for the formation of a programmed DNA double-strand break known in Saccharomyces cerevisiae to initiate meiotic recombination. In both S. cerevisiae and the basidiomycete Coprinus cinereus, spo11 and rad50 mutants are defective in chromosome synapsis during meiosis. Here we demonstrate that a partial restoration of synapsis occurs in C. cinereus spo11 and rad50 mutants if premeiotic DNA replication is prevented. Double mutants were constructed with spo11–1 or rad50–4 and another mutant, spo22–1, which does not undergo premeiotic DNA replication. In both cases, we observed an increase in the percentage of nuclei containing synaptonemal complex (SC) structures, with concomitant decreases in the percentage of nuclei containing axial elements (AE) only or no structures. Both types of double mutants demonstrated significant increases in the average numbers of AE and SC, although SC-containing nuclei did not on average contain more AE than did nuclei showing no synapsis. Our results show that Spo11-induced recombination is not absolutely required for synapsis in C. cinereus, and that the early meiotic role of both Spo11 and Rad50 in SC formation partially depends on premeiotic S phase. This dependency likely reflects either a requirement for these proteins imposed by the premeiotic replication process itself or a requirement for these proteins in synapsis when a sister chromatid (the outcome of DNA replication) is present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homologous recombination in Saccharomyces cerevisiae depends critically on RAD52 function. In vitro, Rad52 protein preferentially binds single-stranded DNA (ssDNA), mediates annealing of complementary ssDNA, and stimulates Rad51 protein-mediated DNA strand exchange. Replication protein A (RPA) is a ssDNA-binding protein that is also crucial to the recombination process. Herein we report that Rad52 protein effects the annealing of RPA–ssDNA complexes, complexes that are otherwise unable to anneal. The ability of Rad52 protein to promote annealing depends on both the type of ssDNA substrate and ssDNA binding protein. RPA allows, but slows, Rad52 protein-mediated annealing of oligonucleotides. In contrast, RPA is almost essential for annealing of longer plasmid-sized DNA but has little effect on the annealing of poly(dT) and poly(dA), which are relatively long DNA molecules free of secondary structure. These results suggest that one role of RPA in Rad52 protein-mediated annealing is the elimination of DNA secondary structure. However, neither Escherichia coli ssDNA binding protein nor human RPA can substitute in this reaction, indicating that RPA has a second role in this process, a role that requires specific RPA–Rad52 protein interactions. This idea is confirmed by the finding that RPA, which is complexed with nonhomologous ssDNA, inhibits annealing but the human RPA–ssDNA complex does not. Finally, we present a model for the early steps of the repair of double-strand DNA breaks in yeast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present statistical methods for analyzing replicated cDNA microarray expression data and report the results of a controlled experiment. The study was conducted to investigate inherent variability in gene expression data and the extent to which replication in an experiment produces more consistent and reliable findings. We introduce a statistical model to describe the probability that mRNA is contained in the target sample tissue, converted to probe, and ultimately detected on the slide. We also introduce a method to analyze the combined data from all replicates. Of the 288 genes considered in this controlled experiment, 32 would be expected to produce strong hybridization signals because of the known presence of repetitive sequences within them. Results based on individual replicates, however, show that there are 55, 36, and 58 highly expressed genes in replicates 1, 2, and 3, respectively. On the other hand, an analysis by using the combined data from all 3 replicates reveals that only 2 of the 288 genes are incorrectly classified as expressed. Our experiment shows that any single microarray output is subject to substantial variability. By pooling data from replicates, we can provide a more reliable analysis of gene expression data. Therefore, we conclude that designing experiments with replications will greatly reduce misclassification rates. We recommend that at least three replicates be used in designing experiments by using cDNA microarrays, particularly when gene expression data from single specimens are being analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD4+ T cell activation, required for virus replication in these cells, occurs in local microenvironmental domains in transient bursts. Thus, although most HIV originates from short-lived virus-producing cells, it is unlikely that chronic infection is generally sustained in rapid continuous cycles of productive infection as has been proposed. Such continuity of productive infection cycles would depend on efficient long-range transmission of HIV from one set of domains to another, in turn requiring the maintenance of sufficiently high concentrations of cell-free virus across lymphoid tissues at all times. By contrast, long-lived cellular sources of HIV maintain the capacity to infect newly activated cells at close range despite the temporal and spatial discontinuities of activation events. Such proximal activation and transmission (PAT) involving chronically and latently infected cells may be responsible for sustained infection, particularly when viral loads are low. Once CD4 cells are productively infected through PAT, they can infect other activated cells in their immediate vicinity. Such events propagate locally but generally do not spread systemically, unlike in the acute phase of the infection, because of the early establishment of protective anergy. Importantly, antiretroviral drug treatment is likely to differentially impact long-range transmission and PAT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmission of prions between mammalian species is thought to be limited by a “species barrier,” which depends on differences in the primary structure of prion proteins in the infecting inoculum and the host. Here we demonstrate that a strain of hamster prions thought to be nonpathogenic for conventional mice leads to prion replication to high levels in such mice but without causing clinical disease. Prions pathogenic in both mice and hamsters are produced. These results demonstrate the existence of subclinical forms of prion infection with important public health implications, both with respect to iatrogenic transmission from apparently healthy humans and dietary exposure to cattle and other species exposed to bovine spongiform encephalopathy prions. Current definitions of the species barrier, which have been based on clinical end-points, need to be fundamentally reassessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many bacterial plasmids replicate by a rolling-circle mechanism that involves the generation of single-stranded DNA (ssDNA) intermediates. Replication of the lagging strand of such plasmids initiates from their single strand origin (sso). Many different types of ssos have been identified. One group of ssos, termed ssoA, which have conserved sequence and structural features, function efficiently only in their natural hosts in vivo. To study the host specificity of sso sequences, we have analyzed the functions of two closely related ssoAs belonging to the staphylococcal plasmid pE194 and the streptococcal plasmid pLS1 in Staphylococcus aureus. The pLS1 ssoA functioned poorly in vivo in S. aureus as evidenced by accumulation of high levels of ssDNA but supported efficient replication in vitro in staphylococcal extracts. These results suggest that one or more host factors that are present in sufficient quantities in S. aureus cell-free extracts may be limiting in vivo. Mapping of the initiation points of lagging strand synthesis in vivo and in vitro showed that DNA synthesis initiates from specific sites within the pLS1 ssoA. These results demonstrate that specific initiation of replication can occur from the pLS1 ssoA in S. aureus although it plays a minimal role in lagging strand synthesis in vivo. Therefore, the poor functionality of the pLS1 in vivo in a nonnative host is caused by the low efficiency rather than a lack of specificity of the initiation process. We also have identified ssDNA promoters and mapped the primer RNAs synthesized by the S. aureus and Bacillus subtilis RNA polymerases from the pE194 and pLS1 ssoAs. The S. aureus RNA polymerase bound more efficiently to the native pE194 ssoA as compared with the pLS1 ssoA, suggesting that the strength of RNA polymerase–ssoA interaction may play a major role in the functionality of the ssoA sequences in Gram-positive bacteria.