37 resultados para Regulatory reforms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficient expression of therapeutic genes in target cells or tissues is an important component of efficient and safe gene therapy. Utilizing regulatory elements from the human cytokeratin 18 (K18) gene, including 5′ genomic sequences and one of its introns, we have developed a novel expression cassette that can efficiently express reporter genes, as well as the human cystic fibrosis transmembrane conductance regulator (CFTR) gene, in cultured lung epithelial cells. CFTR transcripts expressed from the native K18 enhancer/promoter include two alternative splicing products, due to the activation of two cryptic splice sites in the CFTR coding region. Modification of the K18 intron and CFTR cDNA sequences eliminated the cryptic splice sites without changing the CFTR amino acid sequence, and led to enhanced CFTR mRNA and protein expression as well as biological function. Transgenic expression analysis in mice showed that the modified expression cassette can direct efficient and epithelium-specific expression of the Escherichia coli LacZ gene in the airways of fetal lungs, with no detectable expression in lung fibroblasts or endothelial cells. This is the first expression cassette which selectively directs lung transgene expression for CFTR gene therapy to airway epithelia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The myofibrils of cross-striated muscle fibers contain in their M bands cytoskeletal proteins whose main function seems to be the stabilization of the three-dimensional arrangement of thick filaments. We identified two immunoglobin domains (Mp2–Mp3) of M-protein as a site binding to the central region of light meromyosin. This binding is regulated in vitro by phosphorylation of a single serine residue (Ser76) in the immediately adjacent amino-terminal domain Mp1. M-protein phosphorylation by cAMP-dependent kinase A inhibits binding to myosin LMM. Transient transfection studies of cultured cells revealed that the myosin-binding site seems involved in the targeting of M-protein to its location in the myofibril. Using the same method, a second myofibril-binding site was uncovered in domains Mp9–Mp13. These results support the view that specific phosphorylation events could be also important for the control of sarcomeric M band formation and remodeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sterol regulatory element–binding protein-2 (SREBP-2) is produced as a large precursor molecule attached to the endoplasmic reticulum membrane. In response to the sterol depletion, the N-terminal segment of the precursor, which contains a basic helix-loop-helix–leucine zipper domain, is released by two sequential cleavages and is translocated to the nucleus, where it activates the transcription of target genes. The data herein show that released SREBP-2 uses a distinct nuclear transport pathway, which is mediated by importin β. The mature form of SREBP-2 is actively transported into the nucleus when injected into the cell cytoplasm. SREBP-2 binds directly to importin β in the absence of importin α. Ran-GTP but not Ran-GDP causes the dissociation of the SREBP-2–importin β complex. G19VRan-GTP inhibits the nuclear import of SREBP-2 in living cells. In the permeabilized cell in vitro transport system, nuclear import of SREBP-2 is reconstituted only by importin β in conjunction with Ran and its interacting protein p10/NTF2. We further demonstrate that the helix-loop-helix–leucine zipper motif of SREBP-2 contains a novel type of nuclear localization signal, which binds directly to importin β.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exit from mitosis requires the inactivation of mitotic cyclin-dependent kinase–cyclin complexes, primarily by ubiquitin-dependent cyclin proteolysis. Cyclin destruction is regulated by a ubiquitin ligase known as the anaphase-promoting complex (APC). In the budding yeast Saccharomyces cerevisiae, members of a large class of late mitotic mutants, including cdc15, cdc5, cdc14, dbf2, and tem1, arrest in anaphase with a phenotype similar to that of cells expressing nondegradable forms of mitotic cyclins. We addressed the possibility that the products of these genes are components of a regulatory network that governs cyclin proteolysis. We identified a complex array of genetic interactions among these mutants and found that the growth defect in most of the mutants is suppressed by overexpression of SPO12, YAK1, and SIC1 and is exacerbated by overproduction of the mitotic cyclin Clb2. When arrested in late mitosis, the mutants exhibit a defect in cyclin-specific APC activity that is accompanied by high Clb2 levels and low levels of the anaphase inhibitor Pds1. Mutant cells arrested in G1 contain normal APC activity. We conclude that Cdc15, Cdc5, Cdc14, Dbf2, and Tem1 cooperate in the activation of the APC in late mitosis but are not required for maintenance of that activity in G1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To examine the possibility of active recycling of Emp24p between the endoplasmic reticulum (ER) and the Golgi, we sought to identify transport signal(s) in the carboxyl-terminal region of Emp24p. Reporter molecules were constructed by replacing parts of a control invertase-Wbp1p chimera with those of Emp24p, and their transport rates were assessed. The transport of the reporter was found to be accelerated by the presence of the cytoplasmic domain of Emp24p. Mutational analyses revealed that the two carboxyl-terminal residues, leucine and valine (LV), were necessary and sufficient to accelerate the transport. The acceleration was sequence specific, and the terminal valine appeared to be more important. The LV residues accelerated not only the overall transport to the vacuole but also the ER to cis-Golgi transport, suggesting its function in the ER export. Hence the LV residues are a novel anterograde transport signal. The double-phenylalanine residues did not affect the transport by itself but attenuated the effect of the anterograde transport signal. On the other hand, the transmembrane domain significantly slowed down the ER to cis-Golgi transport and effectively counteracted the anterograde transport signal at this step. It may also take part in the retrieval of the protein, because the overall transport to the vacuole was more evidently slowed down. Consistently, the mutation of a conserved glutamine residue in the transmembrane domain further slowed down the transport in a step after arriving at the cis-Golgi. Taken together, the existence of the anterograde transport signal and the elements that regulate its function support the active recycling of Emp24p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac troponin C (cTnC) is the calcium-dependent switch for contraction in heart muscle and a potential target for drugs in the therapy of congestive heart failure. This calmodulin-like protein consists of two lobes connected by a central linker; each lobe contains two EF-hand domains. The regulatory N-terminal lobe of cTnC, unlike that of skeletal troponin C (sTnC), contains only one functional EF-hand and does not open fully upon the binding of Ca2+. We have determined the crystal structure of cTnC, with three bound Ca2+ ions, complexed with the calcium-sensitizer bepridil, to 2.15-Å resolution. In contrast to apo- and 3Ca2+-cTnC, the drug-bound complex displays a fully open N-terminal lobe similar to the N-terminal lobes of 4Ca2+-sTnC and cTnC bound to a C-terminal fragment of cardiac troponin I (residues 147–163). The closing of the lobe is sterically hindered by one of the three bound bepridils. Our results provide a structural basis for the Ca2+-sensitizing effect of bepridil and reveal the details of a distinctive two-stage mechanism for Ca2+ regulation by troponin C in cardiac muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expression of the cellular form of the prion protein (PrPc) gene is required for prion replication and neuroinvasion in transmissible spongiform encephalopathies. The identification of the cell types expressing PrPc is necessary to understanding how the agent replicates and spreads from peripheral sites to the central nervous system. To determine the nature of the cell types expressing PrPc, a green fluorescent protein reporter gene was expressed in transgenic mice under the control of 6.9 kb of the bovine PrP gene regulatory sequences. It was shown that the bovine PrP gene is expressed as two populations of mRNA differing by alternative splicing of one 115-bp 5′ untranslated exon in 17 different bovine tissues. The analysis of transgenic mice showed reporter gene expression in some cells that have been identified as expressing PrP, such as cerebellar Purkinje cells, lymphocytes, and keratinocytes. In addition, expression of green fluorescent protein was observed in the plexus of the enteric nervous system and in a restricted subset of cells not yet clearly identified as expressing PrP: the epithelial cells of the thymic medullary and the endothelial cells of both the mucosal capillaries of the intestine and the renal capillaries. These data provide valuable information on the distribution of PrPc at the cellular level and argue for roles of the epithelial and endothelial cells in the spread of infection from the periphery to the brain. Moreover, the transgenic mice described in this paper provide a model that will allow for the study of the transcriptional activity of the PrP gene promoter in response to scrapie infection.