105 resultados para Random amplification of polymorphic DNA
Resumo:
DNA binding activity of p53 is crucial for its tumor suppressor function. Our recent studies have shown that four molecules of the DNA binding domain of human p53 (p53DBD) bind the response elements with high cooperativity and bend the DNA. By using A-tract phasing experiments, we find significant differences between the bending and twisting of DNA by p53DBD and by full-length human wild-type (wt) p53. Our data show that four subunits of p53DBD bend the DNA by 32–36°, whereas wt p53 bends it by 51–57°. The directionality of bending is consistent with major groove bends at the two pentamer junctions in the consensus DNA response element. More sophisticated phasing analyses also demonstrate that p53DBD and wt p53 overtwist the DNA response element by ≈35° and ≈70°, respectively. These results are in accord with molecular modeling studies of the tetrameric complex. Within the constraints imposed by the protein subunits, the DNA can assume a range of conformations resulting from correlated changes in bend and twist angles such that the p53–DNA tetrameric complex is stabilized by DNA overtwisting and bending toward the major groove at the CATG tetramers. This bending is consistent with the inherent sequence-dependent anisotropy of the duplex. Overall, the four p53 moieties are placed laterally in a staggered array on the external side of the DNA loop and have numerous interprotein interactions that increase the stability and cooperativity of binding. The novel architecture of the p53 tetrameric complex has important functional implications including possible p53 interactions with chromatin.
Resumo:
Many eubacterial DNA polymerases are bifunctional molecules having both polymerization (P) and 5′ nuclease (N) activities, which are contained in separable domains. We previously showed that the DNA polymerase I of Thermus aquaticus (TaqNP) endonucleolytically cleaves DNA substrates, releasing unpaired 5′ arms of bifurcated duplexes. Here, we compare the substrate specificities of TaqNP and the isolated 5′ nuclease domain of this enzyme, TaqN. Both enzymes are significantly activated by primer oligonucleotides that are hybridized to the 3′ arm of the bifurcation; optimal stimulation requires overlap of the 3′ terminal nucleotide of the primer with the terminal base pair of the duplex, but the terminal nucleotide need not hybridize to the complementary strand in the substrate. In the presence of Mn2+ ions, TaqN can cleave both RNA and circular DNA at structural bifurcations. Certain anti-TaqNP mAbs block cleavage by one or both enzymes, whereas others can stimulate cleavage of nonoptimal substrates.
Resumo:
Ho endonuclease of Saccharomyces cerevisiae is a homing endonuclease that makes a site-specific double-strand break in the MAT gene in late G1. Here we show that Ho is rapidly degraded via the ubiquitin-26S proteasome system through two ubiquitin-conjugating enzymes UBC2Rad6 and UBC3Cdc34. UBC2Rad6 is complexed with the ring finger DNA-binding protein Rad18, and we find that Ho is stabilized in rad18 mutants. We show that the Ho degradation pathway involving UBC3Cdc34 goes through the Skp1/Cdc53/F-box (SCF) ubiquitin ligase complex and identify a F-box protein, Yml088w, that is required for Ho degradation. Components of a defined pathway of the DNA damage response, MEC1, RAD9, and CHK1, are also necessary for Ho degradation, whereas functions of the RAD24 epistasis group and the downstream effector RAD53 have no role in degradation of Ho. Our results indicate a link between the endonuclease function of Ho and its destruction.
Resumo:
Amplification of auditory stimuli by hair cells augments the sensitivity of the vertebrate inner ear. Cell-body contractions of outer hair cells are thought to mediate amplification in the mammalian cochlea. In vertebrates that lack these cells, and perhaps in mammals as well, active movements of hair bundles may underlie amplification. We have evaluated a mathematical model in which amplification stems from the activity of mechanoelectrical-transduction channels. The intracellular binding of Ca2+ to channels is posited to promote their closure, which increases the tension in gating springs and exerts a negative force on the hair bundle. By enhancing bundle motion, this force partially compensates for viscous damping by cochlear fluids. Linear stability analysis of a six-state kinetic model reveals Hopf bifurcations for parameter values in the physiological range. These bifurcations signal conditions under which the system’s behavior changes from a damped oscillatory response to spontaneous limit-cycle oscillation. By varying the number of stereocilia in a bundle and the rate constant for Ca2+ binding, we calculate bifurcation frequencies spanning the observed range of auditory sensitivity for a representative receptor organ, the chicken’s cochlea. Simulations using prebifurcation parameter values demonstrate frequency-selective amplification with a striking compressive nonlinearity. Because transduction channels occur universally in hair cells, this active-channel model describes a mechanism of auditory amplification potentially applicable across species and hair-cell types.
Resumo:
Polycyclic aromatic hydrocarbons (PAH) are widespread environmental contaminants, and some are potent carcinogens in rodents. Carcinogenic PAH are activated in cells to metabolites that react with DNA to form stable covalent DNA adducts. It has been proposed [Cavalieri, E. L. & Roger, E. G. (1995) Xenobiotica 25, 677–688] that unstable DNA adducts are also formed and that apurinic sites in the DNA resulting from unstable PAH adducts play a key role in the initiation of cancer. The potent carcinogen dibenzo[a,l]pyrene (DB[a,l]P) is activated in cells to (+)-syn- and (−)-anti-DB[a,l]P-11,12-diol-13,14-epoxide (DB[a,l]PDE), which have been shown to form stable adducts with DNA. To evaluate the importance of unstable PAH adducts, we compared stable adduct formation to apurinic site formation. Stable DB[a,l]PDE adducts were determined by 33P-postlabeling and HPLC. To measure apurinic sites they were converted to strand breaks, and these were monitored by examining the integrity of a particular restriction fragment of the dihydrofolate reductase gene. The method easily detected apurinic sites resulting from methylation by treatment of cells or DNA with dimethyl sulfate or from reaction of DNA with DB[a,l]P in the presence of horseradish peroxidase. We estimate the method could detect 0.1 apurinic site in the 14-kb fragment examined. However, apurinic sites were below our limit of detection in DNA treated directly with (+)-syn- or (−)-anti-DB[a,l]PDE or in DNA from Chinese hamster ovary B11 cells so treated, although in these samples the frequency of stable adducts ranged from 3 to 10 per 14 kb. We also treated the human mammary carcinoma cell line MCF-7 with DB[a,l]P and again could not detect significant amounts of unstable adducts. These results indicate that the proportion of stable adducts formed by DB[a,l]P activated in cells and its diol epoxides is greater than 99% and suggest a predominant role for stable DNA adducts in the carcinogenic activity of DB[a,l]P.
Resumo:
Sequence analysis of chloroplast and mitochondrial large subunit rRNA genes from over 75 green algae disclosed 28 new group I intron-encoded proteins carrying a single LAGLIDADG motif. These putative homing endonucleases form four subfamilies of homologous enzymes, with the members of each subfamily being encoded by introns sharing the same insertion site. We showed that four divergent endonucleases from the I-CreI subfamily cleave the same DNA substrates. Mapping of the 66 amino acids that are conserved among the members of this subfamily on the 3-dimensional structure of I-CreI bound to its recognition sequence revealed that these residues participate in protein folding, homodimerization, DNA recognition and catalysis. Surprisingly, only seven of the 21 I-CreI amino acids interacting with DNA are conserved, suggesting that I-CreI and its homologs use different subsets of residues to recognize the same DNA sequence. Our sequence comparison of all 45 single-LAGLIDADG proteins identified so far suggests that these proteins share related structures and that there is a weak pressure in each subfamily to maintain identical protein–DNA contacts. The high sequence variability we observed in the DNA-binding site of homologous LAGLIDADG endonucleases provides insight into how these proteins evolve new DNA specificity.
Resumo:
Lesion bypass is an important mechanism to overcome replication blockage by DNA damage. Translesion synthesis requires a DNA polymerase (Pol). Human Pol ι encoded by the RAD30B gene is a recently identified DNA polymerase that shares sequence similarity to Pol η. To investigate whether human Pol ι plays a role in lesion bypass we examined the response of this polymerase to several types of DNA damage in vitro. Surprisingly, 8-oxoguanine significantly blocked human Pol ι. Nevertheless, translesion DNA synthesis opposite 8-oxoguanine was observed with increasing concentrations of purified human Pol ι, resulting in predominant C and less frequent A incorporation opposite the lesion. Opposite a template abasic site human Pol ι efficiently incorporated a G, less frequently a T and even less frequently an A. Opposite an AAF-adducted guanine, human Pol ι was able to incorporate predominantly a C. In both cases, however, further DNA synthesis was not observed. Purified human Pol ι responded to a template TT (6–4) photoproduct by inserting predominantly an A opposite the 3′ T of the lesion before aborting DNA synthesis. In contrast, human Pol ι was largely unresponsive to a template TT cis-syn cyclobutane dimer. These results suggest a role for human Pol ι in DNA lesion bypass.
Resumo:
Sequence-specific recognition of DNA can be achieved by triple helix-forming oligonucleotides that bind to the major groove of double-helical DNA. These oligonucleotides have been used as sequence-specific DNA ligands for various purposes, including sequence-specific gene regulation in the so-called ‘antigene strategy’. In particular, (G,A)-containing oligonucleotides can form stable triple helices under physiological conditions. However, triplex formation may be in competition with self-association of these oligonucleotides. For biological applications it would be interesting to identify the conditions under which one structure is favoured as compared to the other(s). Here we have directly studied competition between formation of a parallel (G,A) homoduplex and that of a triple helix by a 13 nt (G,A)-containing oligonucleotide. Temperature gradient gel electrophoresis allows simultaneous detection of competition between the two structures, because of their different temperature dependencies and gel electrophoretic mobilities, and characterisation of this competition.
Resumo:
The mechanisms that underlie the maintenance of and increase in mutant mitochondrial DNA (mtDNA) are central to our understanding of mitochondrial disease. We have therefore developed a technique based on saponin permeabilisation that allows the study of mtDNA synthesis in intact cells. Permeabilisation of cells has been extensively used in an established method both for studying transcription and DNA replication in the nucleus and for measuring respiratory chain activities in mitochondria. We have quantitatively studied incorporation of radiolabelled DNA precursors into mtDNA in human cell lines derived from controls and from patients with mitochondrial DNA disease. Total cell DNA is extracted, restriction digested and Southern blotted, newly synthesised mtDNA being proportional to the label incorporated in each restriction band. A rate of synthesis can then be derived by estimating the relative steady-state mtDNA after probing with full-length mtDNA. Where co-existing mutant and wild-type mtDNA (heteroplasmy) can be distinguished using restriction digestion, their rates of synthesis can be compared within a single cell line. This will be particularly useful in elucidating the pathophysiology of mtDNA diseases in which the distribution of mutant and wild-type mtDNA in cell lines in patient tissues may evolve with time.
Resumo:
We have developed a semi-synthetic approach for preparing long stretches of DNA (>100 bp) containing internal chemical modifications and/or non-Watson–Crick structural motifs which relies on splint-free, cell-free DNA ligations and recycling of side-products by non-PCR thermal cycling. A double-stranded DNA PCR fragment containing a polylinker in its middle is digested with two restriction enzymes and a small insert (∼20 bp) containing the modification or non-Watson–Crick motif of interest is introduced into the middle. Incorrect products are recycled to starting materials by digestion with appropriate restriction enzymes, while the correct product is resistant to digestion since it does not contain these restriction sites. This semi-synthetic approach offers several advantages over DNA splint-mediated ligations, including fewer steps, substantially higher yields (∼60% overall yield) and ease of use. This method has numerous potential applications, including the introduction of modifications such as fluorophores and cross-linking agents into DNA, controlling the shape of DNA on a large scale and the study of non-sequence-specific nucleic acid–protein interactions.
Resumo:
The properties of human DNA helicase V (HDH V) were studied in greater detail following an improved purification procedure. From 450 g of cultured cells, <0.1 mg of pure protein was isolated. HDH V unwinds DNA unidirectionally by moving in the 3′ to 5′ direction along the bound strand in an ATP- and Mg2+-dependent fashion. The enzyme is not processive and can also unwind partial RNA–RNA duplexes such as HDH IV and HDH VIII. The Mr determined by SDS–PAGE (66 kDa) corresponds to that measured under native conditions, suggesting that HDH V exists as a monomer in the nucleus. Microsequencing of the purified HDH V shows that this enzyme is identical to the far upstream element-binding protein (FBP), a protein that stimulates the activity of the c-myc gene by binding specifically to the ‘FUSE’ DNA region localized upstream of its promoter. The sequence of HDH V/FBP contains RGG motifs like HDH IV/nucleolin, HDH VIII/G3BP as well as other human RNA and DNA helicases identified by other laboratories.
Resumo:
We have previously isolated the hpttg proto-oncogene, which is expressed in normal tissues containing proliferating cells and in several kinds of tumors. In fact, expression of hPTTG correlates with cell proliferation in a cell cycle-dependent manner. Recently it was reported that PTTG is a vertebrate analog of the yeast securins Pds1 and Cut2, which are involved in sister chromatid separation. Here we show that hPTTG binds to Ku, the regulatory subunit of the DNA-dependent protein kinase (DNA-PK). hPTTG and Ku associate both in vitro and in vivo and the DNA-PK catalytic subunit phosphorylates hPTTG in vitro. Furthermore, DNA double-strand breaks prevent hPTTG–Ku association and disrupt the hPTTG–Ku complexes, indicating that genome damaging events, which result in the induction of pathways that activate DNA repair mechanisms and halt cell cycle progression, might inhibit hPTTG–Ku interaction in vivo. We propose that hPTTG might connect DNA damage-response pathways with sister chromatid separation, delaying the onset of mitosis while DNA repair occurs.
Resumo:
The generation of reactive oxygen species in the cell provokes, among other lesions, the formation of 8-oxo-7,8-dihydroguanine (8-oxoG) in DNA. Due to mispairing with adenine during replication, 8-oxoG is highly mutagenic. To minimise the mutagenic potential of this oxidised purine, human cells have a specific 8-oxoG DNA glycosylase/AP lyase (hOGG1) that initiates the base excision repair (BER) of 8-oxoG. We show here that in vitro this first enzyme of the BER pathway is relatively inefficient because of a high affinity for the product of the reaction it catalyses (half-life of the complex is >2 h), leading to a lack of hOGG1 turnover. However, the glycosylase activity of hOGG1 is stimulated by the major human AP endonuclease, HAP1 (APE1), the enzyme that performs the subsequent step in BER, as well as by a catalytically inactive mutant (HAP1-D210N). In the presence of HAP1, the AP sites generated by the hOGG1 DNA glycosylase can be occupied by the endonuclease, avoiding the re-association of hOGG1. Moreover, the glycosylase has a higher affinity for a non-cleaved AP site than for the cleaved DNA product generated by HAP1. This would shift the equilibrium towards the free glycosylase, making it available to initiate new catalytic cycles. In contrast, HAP1 does not affect the AP lyase activity of hOGG1. This stimulation of only the hOGG1 glycosylase reaction accentuates the uncoupling of its glycosylase and AP lyase activities. These data indicate that, in the presence of HAP1, the BER of 8-oxoG residues can be highly efficient by bypassing the AP lyase activity of hOGG1 and thus excluding a potentially rate limiting step.
Resumo:
We have developed a simple method for the quantitative detection of specific DNA or RNA molecules based on the finding that BODIPY® FL fluorescence was quenched by its interaction with a uniquely positioned guanine. This approach makes use of an oligonucleotide probe or primer containing a BODIPY® FL-modified cytosine at its 5′-end. When such a probe was hybridized with a target DNA, its fluorescence was quenched by the guanine in the target, complementary to the modified cytosine, and the quench rate was proportional to the amount of target DNA. This widely applicable technique will be used directly with larger samples or in conjunction with the polymerase chain reaction to quantify small DNA samples.
Resumo:
Adenine-DNA glycosylase MutY of Escherichia coli catalyzes the cleavage of adenine when mismatched with 7,8-dihydro-8-oxoguanine (GO), an oxidatively damaged base. The biological outcome is the prevention of C/G→A/T transversions. The molecular mechanism of base excision repair (BER) of A/GO in mammals is not well understood. In this study we report stimulation of mammalian adenine-DNA glycosylase activity by apurinic/apyrimidinic (AP) endonuclease using murine homolog of MutY (Myh) and human AP endonuclease (Ape1), which shares 94% amino acid identity with its murine homolog Apex. After removal of adenine by the Myh glycosylase activity, intact AP DNA remains due to lack of an efficient Myh AP lyase activity. The study of wild-type Ape1 and its catalytic mutant H309N demonstrates that Ape1 catalytic activity is required for formation of cleaved AP DNA. It also appears that Ape1 stimulates Myh glycosylase activity by increasing formation of the Myh–DNA complex. This stimulation is independent of the catalytic activity of Ape1. Consequently, Ape1 preserves the Myh preference for A/GO over A/G and improves overall glycosylase efficiency. Our study suggests that protein–protein interactions may occur in vivo to achieve efficient BER of A/GO.